English

Integrate the following functions w.r.t. x : (2x+1)x+2 - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`

Sum

Solution

Let I = `ff(2x + 1)sqrt(x + 2).dx`
Put x + 2 = t
∴ dx = dt
Also, x = t – 2
∴ 2x + 1 = 2(t – 2) + 1 = 2t – 3
∴ I = `int (2t - 3)sqrt(t) dt`

= `int (2t^(3/2) - 3t^(1/2))dt`

= `2int t^(3/2)dt - 3 intt^(1/2)dt`

= `2.(t^5/2)/((5/2)) - 3 . (t^(3/2))/((3/2)) + c`

= `(4)/(5)(x + 2)^(5/2) - 2(x + 2)^(3/2) + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (A) [Page 110]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Integrate the functions:

`x/(9 - 4x^2)`


\[\int\sqrt{x - x^2} dx\]

\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


The value of \[\int\frac{1}{x + x \log x} dx\] is


`int "dx"/(9"x"^2 + 1)= ______. `


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Integrate the following w.r.t. x : x3 + x2 – x + 1


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `int sin 4x cos 3x dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate `int "x - 1"/sqrt("x + 4")` dx


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int cos sqrtx` dx = _____________


`int (log x)/(log ex)^2` dx = _________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int (sin4x)/(cos 2x) "d"x`


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


Evaluate `int(3x^2 - 5)^2  "d"x`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int1/(4 + 3cos^2x)dx` = ______ 


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


`int (cos x)/(1 - sin x) "dx" =` ______.


`int(log(logx) + 1/(logx)^2)dx` = ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


`int 1/(sinx.cos^2x)dx` = ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


`int "cosec"^4x  dx` = ______.


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate `int1/(x(x-1))dx`


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×