Advertisements
Advertisements
Question
If f'(x) = `x + 1/x`, then f(x) is ______.
Options
`x^2 + log |x| + C`
`x^2/2 + log |x| + C`
`x/2 + log |x| + C`
`x/2 - log |x| + C`
Solution
If f'(x) = `x + 1/x`, then f(x) is `underline(bb(x^2/2 + log |x| + C))`.
Explanation:
`x^2/2 + log |x| + C` .....`(∵ f(x) = int(x + 1/x)dx)`
APPEARS IN
RELATED QUESTIONS
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
Evaluate: `int "e"^sqrt"x"` dx
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
`int sqrt(x^2 - a^2)/x dx` = ______.
Write `int cotx dx`.
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`