English

If m and n, respectively, are the order and the degree of the differential equation ddx[(dydx)]4 = 0, then m + n = ______. - Mathematics

Advertisements
Advertisements

Question

If m and n, respectively, are the order and the degree of the differential equation `d/(dx) [((dy)/(dx))]^4` = 0, then m + n = ______.

Options

  • 1

  • 2

  • 3

  • 4

MCQ
Fill in the Blanks

Solution

If m and n, respectively, are the order and the degree of the differential equation `d/(dx) [((dy)/(dx))]^4` = 0, then m + n = 3.

Explanation:

The given differential equation is `4 ((dy)/(dx))^3  (d^2y)/(dx^2)` = 0.

Here, m = 2 and n = 1

Hence, m + n = 3

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Sample

RELATED QUESTIONS

Determine the order and degree (if defined) of the differential equation:

`((ds)/(dt))^4 + 3s  (d^2s)/(dt^2) = 0`


Determine the order and degree (if defined) of the differential equation:

y″ + (y′)2 + 2y = 0


For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.

`y = e^x (acos x + b sin x)  :  (d^2y)/(dx^2) - 2 dy/dx + 2y = 0`


\[y = px + \sqrt{a^2 p^2 + b^2},\text{ where p} = \frac{dy}{dx}\]

\[\left( \frac{d^2 y}{d x^2} \right)^2 + \left( \frac{dy}{dx} \right)^2 = x \sin \left( \frac{d^2 y}{d x^2} \right)\]

\[\frac{d^2 y}{d x^2} + 5x\left( \frac{dy}{dx} \right) - 6y = \log x\]

\[\left( \frac{dy}{dx} \right)^3 - 4 \left( \frac{dy}{dx} \right)^2 + 7y = \sin x\]

Write the degree of the differential equation \[\left( 1 + \frac{dy}{dx} \right)^3 = \left( \frac{d^2 y}{d x^2} \right)^2\]


The order of the differential equation satisfying
\[\sqrt{1 - x^4} + \sqrt{1 - y^4} = a\left( x^2 - y^2 \right)\] is


Determine the order and degree (if defined) of the following differential equation:-

y"' + 2y" + y' = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(1+x^2)`                     `y'=(xy)/(1+x^2)`


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = x sin x              `xy'=y+xsqrt(x^2-y^2)`


Write the order and degree of the differential equation `((d^4"y")/(d"x"^4))^2 =  [ "x" + ((d"y")/(d"x"))^2]^3`.


Determine the order and degree of the following differential equation:

`(("d"^3"y")/"dx"^3)^(1/2) - ("dy"/"dx")^(1/3) = 20`


Determine the order and degree of the following differential equations.

`(d^4y)/dx^4 + [1+(dy/dx)^2]^3 = 0`


Fill in the blank:

The order of highest derivative occurring in the differential equation is called ___________ of the differential equation.


Fill in the blank:

Order and degree of a differential equation are always __________ integers.


Select and write the correct alternative from the given option for the question

The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively


State whether the following statement is True or False: 

The degree of a differential equation is the power of highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any


The order and degree of the differential equation `[1 + ["dy"/"dx"]^3]^(7/3) = 7 (("d"^2"y")/"dx"^2)` are respectively.


The order and degree of the differential equation `("d"^2"y")/"dx"^2 + (("d"^3"y")/"dx"^3) + x^(1/5) = 0` are respectively.


The degree of the differential equation `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 is ______.


The degree of the differential equation `("d"^2y)/("d"x^2) + (("d"y)/("d"x))^3 + 6y^5` = 0 is ______.


Write the sum of the order and the degree of the following differential equation:

`d/(dx) (dy/dx)` = 5


Determine the order and degree of the following differential equation:

`(d^2y)/(dx^2) + x((dy)/(dx)) + y` = 2 sin x


The order of the differential equation of all parabolas, whose latus rectum is 4a and axis parallel to the x-axis, is ______.


The degree and order of the differential equation `[1 + (dy/dx)^3]^(7/3) = 7((d^2y)/(dx^2))` respectively are ______.


Degree of the differential equation `sinx + cos(dy/dx)` = y2 is ______.


Assertion: Degree of the differential equation: `a(dy/dx)^2 + bdx/dy = c`, is 3

Reason: If each term involving derivatives of a differential equation is a polynomial (or can be expressed as polynomial) then highest exponent of the highest order derivative is called the degree of the differential equation.

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×