Advertisements
Advertisements
Question
Determine the order and degree of the following differential equations.
`(d^4y)/dx^4 + [1+(dy/dx)^2]^3 = 0`
Solution
`(d^4y)/dx^4 + [1+(dy/dx)^2]^3 = 0`
By definition of order and degree,
Order : 4 ; Degree : 1
APPEARS IN
RELATED QUESTIONS
Determine the order and degree (if defined) of the differential equation:
y″ + 2y′ + sin y = 0
For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.
`y = xsin 3x : (d^2y)/(dx^2) + 9y - 6 cos 3x = 0`
The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 - \left( \frac{dy}{dx} \right) = y^3\], is
The degree of the differential equation \[\left\{ 5 + \left( \frac{dy}{dx} \right)^2 \right\}^{5/3} = x^5 \left( \frac{d^2 y}{d x^2} \right)\], is
Write the order and degree of the differential equation `((d^4"y")/(d"x"^4))^2 = [ "x" + ((d"y")/(d"x"))^2]^3`.
Determine the order and degree of the following differential equations.
`((d^3y)/dx^3)^(1/6) = 9`
Fill in the blank:
The order of highest derivative occurring in the differential equation is called ___________ of the differential equation.
State whether the following is True or False:
The degree of the differential equation `e^((dy)/(dx)) = dy/dx +c` is not defined.
Find the order and degree of the following differential equation:
`[ (d^3y)/dx^3 + x]^(3/2) = (d^2y)/dx^2`
Order and degree of differential equation`(("d"^3y)/("d"x^3))^(1/6)`= 9 is ______
The order and degree of the differential equation `("d"^2"y")/"dx"^2 + (("d"^3"y")/"dx"^3) + x^(1/5) = 0` are respectively.
The degree of the differential equation `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 is ______.
The order of differential equation `2x^2 (d^2y)/(dx^2) - 3 (dy)/(dx) + y` = 0 is
If m and n, respectively, are the order and the degree of the differential equation `d/(dx) [((dy)/(dx))]^4` = 0, then m + n = ______.
Degree of the differential equation `sinx + cos(dy/dx)` = y2 is ______.