English

Determine the order and degree of the following differential equation: dydxdydx(d3ydx3)12-(dydx)13=20 - Mathematics and Statistics

Advertisements
Advertisements

Question

Determine the order and degree of the following differential equation:

`(("d"^3"y")/"dx"^3)^(1/2) - ("dy"/"dx")^(1/3) = 20`

Sum

Solution

`(("d"^3"y")/"dx"^3)^(1/2) - ("dy"/"dx")^(1/3) = 20`

`(("d"^3"y")/"dx"^3)^(1/2) = 20 + ("dy"/"dx")^(1/3)`

Taking power 6 on both sides.

`[(("d"^3"y")/"dx"^3)^(1/2)]^6 = [20 + ("dy"/"dx")^(1/3)]^6`

`(("d"^3"y")/"dx"^3)^3 = [20 + ("dy"/"dx")^(1/3)]^6`

∴ The given differential equation is radical and fraction free and its highest order is 3.

∴ Order = 3, degree = 3

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Exercise 6.1 [Page 193]

RELATED QUESTIONS

Determine the order and degree (if defined) of the differential equation:

`(d^4y)/(dx^4) + sin(y^("')) = 0`


Determine the order and degree (if defined) of the differential equation:

y' + 5y = 0


Determine the order and degree (if defined) of the differential equation:

y′′′ + 2y″ + y′ = 0


Determine the order and degree (if defined) of the differential equation:

y′ + y = ex


For the differential equation given below, indicate its order and degree (if defined).

`(d^4y)/dx^4 - sin ((d^3y)/(dx^3)) = 0`


For the given below, verify that the given function (implicit or explicit) is a solution to the corresponding differential equation.

`y = xsin 3x   :   (d^2y)/(dx^2) + 9y - 6 cos 3x = 0`


\[\sqrt{1 - y^2} dx + \sqrt{1 - x^2} dx = 0\]

\[2\frac{d^2 y}{d x^2} + 3\sqrt{1 - \left( \frac{dy}{dx} \right)^2 - y} = 0\]

\[y = px + \sqrt{a^2 p^2 + b^2},\text{ where p} = \frac{dy}{dx}\]

\[\left( \frac{d^2 y}{d x^2} \right)^2 + \left( \frac{dy}{dx} \right)^2 = x \sin \left( \frac{d^2 y}{d x^2} \right)\]

(y'')2 + (y')3 + sin y = 0


\[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} + \frac{dy}{dx} + y \sin y = 0\]

\[\left( \frac{dy}{dx} \right)^3 - 4 \left( \frac{dy}{dx} \right)^2 + 7y = \sin x\]

\[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]

Define order of a differential equation.


Write the order of the differential equation
\[1 + \left( \frac{dy}{dx} \right)^2 = 7 \left( \frac{d^2 y}{d x^2} \right)^3\]


Write the degree of the differential equation
\[\frac{d^2 y}{d x^2} + x \left( \frac{dy}{dx} \right)^2 = 2 x^2 \log \left( \frac{d^2 y}{d x^2} \right)\]


Write the order of the differential equation whose solution is y = a cos x + b sin x + c e−x.


Write the degree of the differential equation \[\left( \frac{dy}{dx} \right)^4 + 3x\frac{d^2 y}{d x^2} = 0\]


Write the degree of the differential equation \[\left( 1 + \frac{dy}{dx} \right)^3 = \left( \frac{d^2 y}{d x^2} \right)^2\]


The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 - \left( \frac{dy}{dx} \right) = y^3\], is


If p and q are the order and degree of the differential equation \[y\frac{dy}{dx} + x^3 \frac{d^2 y}{d x^2} + xy\] = cos x, then


Find the order and the degree of the differential equation `x^2 (d^2y)/(dx^2) = { 1 + (dy/dx)^2}^4`


Determine the order and degree of the following differential equation:

`(dy)/(dx) = (2sin x + 3)/(dy/dx)`


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + ("dy"/"dx")^2 + 7"x" + 5 = 0`


Determine the order and degree of the following differential equation:

(y''')2 + 3y'' + 3xy' + 5y = 0


Determine the order and degree of the following differential equation:

`(("d"^2"y")/"dx"^2)^2 + cos ("dy"/"dx") = 0`


Determine the order and degree of the following differential equation:

`[1 + (dy/dx)^2]^(3/2) = 8(d^2y)/dx^2`


Determine the order and degree of the following differential equation:

`(("d"^3"y")/"dx"^3)^2 = root(5)(1 + "dy"/"dx")`


Determine the order and degree of the following differential equations.

`((d^2y)/(dx^2))^2 + ((dy)/(dx))^2 =a^x `


Determine the order and degree of the following differential equations.

`(d^4y)/dx^4 + [1+(dy/dx)^2]^3 = 0`


Determine the order and degree of the following differential equations.

`(y''')^2 + 2(y'')^2 + 6y' + 7y = 0`


Determine the order and degree of the following differential equations.

`sqrt(1+1/(dy/dx)^2) = (dy/dx)^(3/2)`


Determine the order and degree of the following differential equations.

`dy/dx = 7 (d^2y)/dx^2`


Determine the order and degree of the following differential equations.

`((d^3y)/dx^3)^(1/6) = 9`


Choose the correct alternative.

The order and degree of `(dy/dx)^3 - (d^3y)/dx^3 + ye^x = 0` are respectively.


Choose the correct alternative.

The order and degree of `[ 1+ (dy/dx)^3]^(2/3) = 8 (d^3y)/dx^3` are respectively.


State whether the following is True or False:

The order of highest derivative occurring in the differential equation is called degree of the differential equation.


State whether the following is True or False:

The degree of the differential equation `e^((dy)/(dx)) = dy/dx +c` is not defined.


Find the order and degree of the following differential equation:

`[ (d^3y)/dx^3 + x]^(3/2) = (d^2y)/dx^2`


Find the order and degree of the following differential equation:

`x+ dy/dx = 1 + (dy/dx)^2`


Select and write the correct alternative from the given option for the question

The order and degree of `(1 + (("d"y)/("d"x))^3)^(2/3) = 8 ("d"^3y)/("d"x^3)` are respectively


The order and degree of `((dy)/(dx))^3 - (d^3y)/(dx^3) + ye^x` = 0 are ______.


Order of highest derivative occurring in the differential equation is called the ______ of the differential equation


Order and degree of differential equation are always ______ integers


The power of highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any is called ______ of the differential equation


Order and degree of differential equation`(("d"^3y)/("d"x^3))^(1/6)`= 9 is ______


State whether the following statement is True or False: 

The degree of a differential equation is the power of highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any


State whether the following statement is True or False:

Order and degree of differential equation `x ("d"^3y)/("d"x^3) + 6(("d"^2y)/("d"x^2))^2 + y` = 0 is (2, 2)


The order and degree of the differential equation `[1 + 1/("dy"/"dx")^2]^(5/3) = 5 ("d"^2y)/"dx"^2` are respectively.


The order of the differential equation of all circles which lie in the first quadrant and touch both the axes is ______.


The degree of the differential equation `1/2 ("d"^3"y")/"dx"^3 = {1 + (("d"^2"y")/"dx"^2)}^(5/3)` is ______.


The differential equation of the family of curves y = ex (A cos x + B sin x). Where A and B are arbitary constants is ______.


The order and degree of the differential equation `("d"^2"y")/"dx"^2 + (("d"^3"y")/"dx"^3) + x^(1/5) = 0` are respectively.


The order of the differential equation whose general solution is given by `y=C_(1)e^(2x+C_2)+C_3e^x+C_4sin(x+C_5)` is ______.


The degree of the differential equation `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` is ______.


Order of the differential equation representing the family of ellipses having centre at origin and foci on x-axis is two.


The degree of the differential equation `(("d"^2y)/("d"x^2))^2 + (("d"y)/("d"x))^2 = xsin(("d"y)/("d"x))` is ______.


The order of differential equation `2x^2 (d^2y)/(dx^2) - 3 (dy)/(dx) + y` = 0 is


Write the degree of the differential equation (y''')2 + 3(y") + 3xy' + 5y = 0


The degree of the differential equation `dy/dx - x = (y - x dy/dx)^-4` is ______.


The differential equation representing the family of curves y2 = `2c(x + sqrt(c))`, where c is a positive parameter, is of ______.


The order and degree of the differential equation `sqrt(dy/dx) - 4 dy/dx - 7x` = 0 are ______.


The degree of the differential equation `((d^2y)/dx^2)^2 + (dy/dx)^3` = ax is 3.


The sum of the order and the degree of the differential equation `d/dx[(dy/dx)^3]` is ______.


The degree of the differential equation `[1 + (dy/dx)^2]^3 = ((d^2y)/(dx^2))^2` is ______.


Find the order and degree of the differential equation `(d^2y)/(dx^2) = root(3)(1 - (dy/dx)^4`


Assertion: Degree of the differential equation: `a(dy/dx)^2 + bdx/dy = c`, is 3

Reason: If each term involving derivatives of a differential equation is a polynomial (or can be expressed as polynomial) then highest exponent of the highest order derivative is called the degree of the differential equation.

Which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×