English

Define Order of a Differential Equation. - Mathematics

Advertisements
Advertisements

Question

Define order of a differential equation.

Solution

Order of differential equation:

The order of a differential equation is the order of its highest order derivative that apears in the equation.
example: \[\frac{d^2 y}{d x^2} - 4\left( \frac{dy}{dx} \right) = 2y\]
order of the differential equation is 2.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Very Short Answers [Page 137]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Very Short Answers | Q 2 | Page 137

RELATED QUESTIONS

For the differential equation given below, indicate its order and degree (if defined).

`(d^2y)/dx^2 + 5x(dy/dx)^2 - 6y = log x`


For the differential equation given below, indicate its order and degree (if defined).

`(d^4y)/dx^4 - sin ((d^3y)/(dx^3)) = 0`


(xy2 + x) dx + (y − x2y) dy = 0


\[\frac{d^2 y}{d x^2} + 3 \left( \frac{dy}{dx} \right)^2 = x^2 \log\left( \frac{d^2 y}{d x^2} \right)\]

\[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} + \frac{dy}{dx} + y \sin y = 0\]

\[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]

Write the order of the differential equation of the family of circles touching X-axis at the origin.


Find the sum of the order and degree of the differential equation
\[y = x \left( \frac{dy}{dx} \right)^3 + \frac{d^2 y}{d x^2}\]


Determine the order and degree (if defined) of the following differential equation:-

y" + (y')2 + 2y = 0


Determine the order and degree of the following differential equation:

(y''')2 + 3y'' + 3xy' + 5y = 0


Determine the order and degree of the following differential equation:

`(("d"^3"y")/"dx"^3)^(1/2) - ("dy"/"dx")^(1/3) = 20`


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + 5 "dy"/"dx" + "y" = "x"^3`


Determine the order and degree of the following differential equations.

`(d^4y)/dx^4 + [1+(dy/dx)^2]^3 = 0`


Determine the order and degree of the following differential equations.

`((d^3y)/dx^3)^(1/6) = 9`


Find the order and degree of the following differential equation:

`[ (d^3y)/dx^3 + x]^(3/2) = (d^2y)/dx^2`


The order and degree of `((dy)/(dx))^3 - (d^3y)/(dx^3) + ye^x` = 0 are ______.


Order and degree of differential equation are always ______ integers


State whether the following statement is True or False: 

Order and degree of differential equation are always positive integers.


State whether the following statement is True or False: 

The degree of a differential equation is the power of highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any


Degree of the given differential equation

`(("d"^3"y")/"dx"^2)^2 = (1 + "dy"/"dx")^(1/3)` is


The degree of the differential equation `("d"^4"y")/"dx"^4 + sqrt(1 + ("dy"/"dx")^4)` = 0 is


The differential equation `x((d^2y)/dx^2)^3 + ((d^3y)/dx^3)^2y = x^2` is of ______ 


The degree of the differential equation `1/2 ("d"^3"y")/"dx"^3 = {1 + (("d"^2"y")/"dx"^2)}^(5/3)` is ______.


The differential equation of the family of curves y = ex (A cos x + B sin x). Where A and B are arbitary constants is ______.


The order and degree of the differential equation `("d"^2"y")/"dx"^2 + (("d"^3"y")/"dx"^3) + x^(1/5) = 0` are respectively.


The degree of the differential equation `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` is ______.


The degree of the differential equation `("d"^2y)/("d"x^2) + 3("dy"/"dx")^2 = x^2 log(("d"^2y)/("d"x^2))` is ______.


The order and degree of the differential equation `[1 + ("dy"/"dx")^2]^2 = ("d"^2y)/("d"x^2)` respectively, are ______.


The degree of the differential equation `("dy"/"dx")^2 + (("d"^2y)/("d"x^2))^2` = 0 is ______.


Degree of the differential equation `sqrt(1 + ("d"^2y)/("d"x^2)) = x + "dy"/"dx"` is not defined.


The degree of differential equation `((d^2y)/(dx^2))^3 + ((dy)/(dx))^2 + sin((dy)/(dx)) + 1` = 0 is:


y2 = (x + c)3 is the general solution of the differential equation ______.


If m and n, respectively, are the order and the degree of the differential equation `d/(dx) [((dy)/(dx))]^4` = 0, then m + n = ______.


The differential equation representing the family of curves y2 = `2c(x + sqrt(c))`, where c is a positive parameter, is of ______.


The degree of the differential equation `((d^2y)/dx^2)^2 + (dy/dx)^3` = ax is 3.


The order and the degree of the differential equation `(1 + 3 dy/dx)^2 = 4 (d^3y)/(dx^3)` respectively are ______.


Find the order and degree of the differential equation

`sqrt(1 + 1/(dy/dx)^2) = ((d^2y)/(dx^2))^(3/2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×