English

Define Degree of a Differential Equation. - Mathematics

Advertisements
Advertisements

Question

Define degree of a differential equation.

Solution

Degree of differential equation:

The degree of a differential equation is the power of the highest order derivative occurring in a differential equation when it is written as a polynomial in differential coefficients.
example: \[\left( \frac{d^2 y}{d x^2} \right)^2 - 4\left( \frac{dy}{dx} \right) = 2y\]
the degree of the given differential equation is 2

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Very Short Answers [Page 137]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Very Short Answers | Q 3 | Page 137

RELATED QUESTIONS

Write the degree of the differential equation `x^3((d^2y)/(dx^2))^2+x(dy/dx)^4=0`


Determine the order and degree (if defined) of the differential equation:

`((ds)/(dt))^4 + 3s  (d^2s)/(dt^2) = 0`


Determine the order and degree (if defined) of the differential equation:

y′′′ + 2y″ + y′ = 0


Determine the order and degree (if defined) of the differential equation:

y″ + (y′)2 + 2y = 0


\[2\frac{d^2 y}{d x^2} + 3\sqrt{1 - \left( \frac{dy}{dx} \right)^2 - y} = 0\]

\[y = px + \sqrt{a^2 p^2 + b^2},\text{ where p} = \frac{dy}{dx}\]

(y'')2 + (y')3 + sin y = 0


\[\frac{d^2 y}{d x^2} + 5x\left( \frac{dy}{dx} \right) - 6y = \log x\]

Write the order of the differential equation
\[1 + \left( \frac{dy}{dx} \right)^2 = 7 \left( \frac{d^2 y}{d x^2} \right)^3\]


Write the order of the differential equation of the family of circles touching X-axis at the origin.


Write the order of the differential equation of all non-horizontal lines in a plane.


What is the degree of the following differential equation?

\[5x \left( \frac{dy}{dx} \right)^2 - \frac{d^2 y}{d x^2} - 6y = \log x\]

Write the degree of the differential equation \[\left( \frac{dy}{dx} \right)^4 + 3x\frac{d^2 y}{d x^2} = 0\]


Write the order and degree of the differential equation
\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^\frac{1}{4} + x^\frac{1}{5} = 0\]


The degree of the differential equation \[\left( \frac{d^2 y}{d x^2} \right)^2 - \left( \frac{dy}{dx} \right) = y^3\], is


Determine the order and degree (if defined) of the following differential equation:-

y"' + y2 + ey' = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = cos x + C            y' + sin x = 0


Write the order and the degree of the following differential equation: `"x"^3 ((d^2"y")/(d"x"^2))^2 + "x" ((d"y")/(d"x"))^4 = 0`


Determine the order and degree of the following differential equation:

`"x" + ("d"^2"y")/"dx"^2 = sqrt(1 + (("d"^2"y")/"dx"^2)^2)`


Choose the correct option from the given alternatives:

The order and degree of the differential equation `sqrt(1 + ("dy"/"dx")^2) = (("d"^2"y")/"dx"^2)^(3/2)` are respectively.


Determine the order and degree of the following differential equation:

`("d"^2"y")/"dx"^2 + 5 "dy"/"dx" + "y" = "x"^3`


Determine the order and degree of the following differential equations.

`(d^2x)/(dt^2)+((dx)/(dt))^2 + 8=0`


Choose the correct alternative.

The order and degree of `(dy/dx)^3 - (d^3y)/dx^3 + ye^x = 0` are respectively.


Choose the correct alternative.

The order and degree of `[ 1+ (dy/dx)^3]^(2/3) = 8 (d^3y)/dx^3` are respectively.


Fill in the blank:

The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called __________ of the differential equation.


State whether the following is True or False:

The order of highest derivative occurring in the differential equation is called degree of the differential equation.


State whether the following is True or False:

The power of the highest ordered derivative when all the derivatives are made free from negative and / or fractional indices if any is called order of the differential equation.


Find the order and degree of the following differential equation:

`x+ dy/dx = 1 + (dy/dx)^2`


The power of highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any is called ______ of the differential equation


State whether the following statement is True or False:  

The degree of a differential equation `"e"^(-("d"y)/("d"x)) = ("d"y)/("d"x) + "c"` is not defined


The degree of the differential equation `1/2 ("d"^3"y")/"dx"^3 = {1 + (("d"^2"y")/"dx"^2)}^(5/3)` is ______.


The order and degree of `(("n + 1")/"n")("d"^4"y")/"dx"^4 = ["n" + (("d"^2"y")/"dx"^2)^4]^(3//5)` are respectively.


If m and n are the order and degree of the differential equation `((d^3y)/(dx^3))^6+5((d^3y)/(dx^3))^4/((d^4y)/(dx^4))+(d^4y)/(dx^4)=x^3-1,` then ______.


The degree of the differential equation `(1 + "dy"/"dx")^3 = (("d"^2y)/("d"x^2))^2` is ______.


The order of the differential equation of all circles of given radius a is ______.


The degree of the differential equation `sqrt(1 + (("d"y)/("d"x))^2)` = x is ______.


Write the sum of the order and the degree of the following differential equation:

`d/(dx) (dy/dx)` = 5


y2 = (x + c)3 is the general solution of the differential equation ______.


The order of the differential equation of all parabolas, whose latus rectum is 4a and axis parallel to the x-axis, is ______.


Find the order and degree of the differential equation

`sqrt(1 + 1/(dy/dx)^2) = ((d^2y)/(dx^2))^(3/2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×