Advertisements
Advertisements
Question
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
Solution
We have,
\[y = Cx + 5 . . . . . \left( 1 \right)\]
\[ \Rightarrow \frac{dy}{dx} = C\]
\[\text{ Substituting the value of C in }\left( 1 \right),\text{ we get }\]
\[y = \frac{dy}{dx} \times x + 5\]
\[ \Rightarrow x\frac{dy}{dx} - y + 5 = 0 \]
\[\text{ Hence, }x\frac{dy}{dx} - y + 5 = 0\text{ is the differential equation representing the family of straight lines }y = Cx + 5, \text{ where C is an arbitary constant . }\]
APPEARS IN
RELATED QUESTIONS
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Show that y = AeBx is a solution of the differential equation
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
x cos2 y dx = y cos2 x dy
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
(y2 − 2xy) dx = (x2 − 2xy) dy
(x + 2y) dx − (2x − y) dy = 0
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Solve:
(x + y) dy = a2 dx
y2 dx + (xy + x2)dy = 0
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.