English

Write the Differential Equation Representing the Family of Straight Lines Y = Cx + 5, Where C is an Arbitrary Constant. - Mathematics

Advertisements
Advertisements

Question

Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.

Solution

We have, 
\[y = Cx + 5 . . . . . \left( 1 \right)\]
\[ \Rightarrow \frac{dy}{dx} = C\]
\[\text{ Substituting the value of C in }\left( 1 \right),\text{ we get }\]
\[y = \frac{dy}{dx} \times x + 5\]
\[ \Rightarrow x\frac{dy}{dx} - y + 5 = 0 \]
\[\text{ Hence, }x\frac{dy}{dx} - y + 5 = 0\text{ is the differential equation representing the family of straight lines }y = Cx + 5, \text{ where C is an arbitary constant . }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Very Short Answers [Page 137]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Very Short Answers | Q 4 | Page 137

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

x cos2 y  dx = y cos2 x dy


\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

(y2 − 2xy) dx = (x2 − 2xy) dy


(x + 2y) dx − (2x − y) dy = 0


Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Solve:

(x + y) dy = a2 dx


y2 dx + (xy + x2)dy = 0


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×