English

Prove that: ∫02af(x)dx=∫0af(x)dx+∫0af(2a-x)dx - Mathematics and Statistics

Advertisements
Advertisements

Questions

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`

Hence show that:

`int_0^pi sin x  dx = 2 int_0^(pi/2) sin x  dx`

Theorem

Solution

Since ‘a’ lies between 0 and 2a,
we have

`int_0^(2a)f(x)dx=int_0^af(x)dx+int_a^(2a)f(x)dx,  .......(byint_a^bf(x)dx=int_a^cf(x)dx+int_c^bf(x)dx)`

`=I_1+I_2`     ........................(say)

`I_2 = int_a^(2a)f(x)dx`

Put x = 2a − t

Therefore, dx = −dt

When x = a, 2a − t = a

t = a

When x = 2a, 2a − t = 2a

t = 0

`I_2 = int_0^(2a) f(x) dx = int_a^0 f(2a - t) (-dt)`

`= -int_a^0 f(2a - t)dt = int_0^a f(2a - t)dt      ...................... (By int_a^b f(x)dx = -int_b^a f(x)dx)`

`=int_0^a f(2a - x)dx    ..............(By int_a^b f(X)dx = int_a^b f(t)dt)`

`int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`

`= int_0^a [f(x) + f(2a - x)]dx`

To show that:

`int_0^pi sin x  dx = 2 int_0^(pi/2) sin x  dx`

We use the proven property by setting f(x) = sin x and 2a = π, which means a = `pi/2`.

The property tells us that:

`int_0^pi sin x  dx = int_0^(pi/2) sin  x  dx + int_0^(pi/2) sin (pi - x)  dx`

Knowing the trigonometric identity sin (π - x) = sin x, the equation simplifies to:

`int_0^pi sin x  dx = 2 int_0^(pi/2) sin x  dx`

This directly applies the property to the integral of sin x over [0, π] to show it equals twice the integral of sin x over `[0, pi/2]`, demonstrating the utility of this property in simplifying integrals with symmetric functions over specific intervals​.

shaalaa.com

Notes

Students should refer to the answer according to their questions.

  Is there an error in this question or solution?
2013-2014 (March)

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\sin^4 x\frac{dy}{dx} = \cos x\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\frac{dy}{dx} = \sin^2 y\]

(1 + x2) dy = xy dx


\[x\frac{dy}{dx} + \cot y = 0\]

(y + xy) dx + (x − xy2) dy = 0


dy + (x + 1) (y + 1) dx = 0


Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} = \left( x + y \right)^2\]

\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

(x + y) (dx − dy) = dx + dy


(x + 2y) dx − (2x − y) dy = 0


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Define a differential equation.


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Find the differential equation whose general solution is

x3 + y3 = 35ax.


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


For each of the following differential equations find the particular solution.

(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

`dy/dx + 2xy = x`


Solve the following differential equation.

dr + (2r)dθ= 8dθ


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Solve the differential equation:

dr = a r dθ − θ dr


 `dy/dx = log x`


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Solve the following differential equation y2dx + (xy + x2) dy = 0


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


The function y = ex is solution  ______ of differential equation


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×