Advertisements
Advertisements
Question
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
Solution
The given differential equation is `"dy"/"dx" = "xy"/("x"^2+"y"^2)` ....(i)
Let y = vx, then .......(ii)
`"dy"/"dx"="v" + "x" "dv"/"dx"` ....(iii)
from (i), (ii) and (iii), we get
`"v" + "x" "dv"/"dx" = "vx"^2/("x"^2+"v"^2"x"^2)`
`⇒ "v" + "x" "dv"/"dx" = "v"^2/(1+"v"^2)`
`⇒ "x" "dv"/"dx" = ("v"^2-"v"-"v"^3)/(1+"v"^2)`
`⇒((1+"v"^2))/("v"^3+"v"-"v"^2)"dv" = -"dx"/"x"`
`⇒(("v"^2 +1-"v"+"v"))/("v"("v"^2+1-"v"))"dv" = -"dx"/"x"`
`⇒(1/"v" + 1/("v"^2+1-"v"))"dv" = -"dx"/"x"`
Now, Integrate both the sides
`⇒ int (1/"v"+1/("v"^2+1-"v"))"dv" = - int "dx"/"x"`
`⇒ int1/"v""dv" + int1/("v"^2+1-"v")"dv" = - int"dx"/"x"`
`⇒int 1/"v" "dv" +int 1/("v"^2-2."v". 1/2+1/4+1-1/4)"dv" = -int"dx"/"x"`
`⇒int 1/"v" "dv" + int 1/(("v"-1/2)^2+(sqrt3/2)^2) "dv" = -int"dx"/"x"`
`⇒ "lnv" + 2/sqrt3 tan^-1((2"v"-1)/sqrt3)= - "lnx"+"c"`
`⇒"lny" + 2/sqrt3 tan^-1((2"y"-"x")/(sqrt3"x"))="c"`
It is given that y = 1 when x = 0,
Therefore c =`pi/sqrt3`
Hence, the particular solution of the given differential equation is `"ln y" + 2/sqrt3 tan^-1((2"y"-"x")/(sqrt3"x")) = pi/sqrt3.`
APPEARS IN
RELATED QUESTIONS
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Find the differential equation whose general solution is
x3 + y3 = 35ax.
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is ex, then its solution is
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y