English

Show that the Equation of the Curve Whose Slope at Any Point is Equal to Y + 2x and Which Passes Through the Origin is Y + 2 (X + 1) = 2e2x. - Mathematics

Advertisements
Advertisements

Question

Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.

Sum

Solution

According to the question, 
\[\frac{dy}{dx} = y + 2x\]
\[ \Rightarrow \frac{dy}{dx} - y = 2x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form 
\[\frac{dy}{dx} + Py = Q\]
where P = - 1 and Q = 2x
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{- \int dx} \]
\[ = e^{- x} \]
\[\text{Multiplying both sides of }\left( 1 \right)\text{ by }I . F . = e^{- x} , \text{ we get }\]
\[ e^{- x} \left( \frac{dy}{dx} - y \right) = e^{- x} 2x \]
\[ \Rightarrow e^{- x} \frac{dy}{dx} - e^{- x} y = e^{- x} 2x \]
Integrating both sides with respect to x, we get

\[ \Rightarrow y e^{- x} = 2x\int e^{- x} dx - 2\int\left[ \frac{d}{dx}\left( x \right)\int e^{- x} dx \right]dx + C\]
\[ \Rightarrow y e^{- x} = - 2x e^{- x} - 2 e^{- x} + C . . . . . \left( 2 \right)\]
Since the curve passes through origin, we have
\[0 \times e^0 = - 2 \times 0 \times e^0 - 2 e^0 + C\]
\[ \Rightarrow C = 2\]
\[\text{ Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[y e^{- x} = - 2x e^{- x} - 2 e^{- x} + 2\]
\[ \Rightarrow y = - 2x - 2 + 2 e^x \]
\[ \Rightarrow y + 2\left( x + 1 \right) = 2 e^x \]

shaalaa.com

Notes

\[\text{In the question it should be }e^x \text{ instead of }e^{2x} . \]

  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.11 [Page 135]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.11 | Q 17 | Page 135

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\frac{dy}{dx} = \log x\]

\[\sqrt{1 - x^4} dy = x\ dx\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

\[\frac{dy}{dx} = 1 - x + y - xy\]

dy + (x + 1) (y + 1) dx = 0


\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]

Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

(x + y) (dx − dy) = dx + dy


2xy dx + (x2 + 2y2) dy = 0


\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Define a differential equation.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


The solution of the differential equation y1 y3 = y22 is


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


Solve the following differential equation.

`dy/dx + 2xy = x`


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×