English

X D Y D X = Y − X Cos 2 ( Y X ) - Mathematics

Advertisements
Advertisements

Question

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solution

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y - x \cos^2 \left( \frac{y}{x} \right)}{x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x} - \cos^2 \left( \frac{y}{x} \right)\]
This is a homogeneous differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = v - \cos^2 v\]
\[ \Rightarrow x\frac{dv}{dx} = - \cos^2 v\]
\[ \Rightarrow \frac{1}{\cos^2 v}dv = - \frac{1}{x}dx\]
\[ \Rightarrow \sec^2 v = - \frac{1}{x}dx\]
Integrating both sides, we get 
\[\int \sec^2 v dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \tan v = - \log \left| x \right| + \log C \]
\[ \Rightarrow \tan v = \log \left| \frac{C}{x} \right|\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[\tan \left( \frac{y}{x} \right) = \log \left| \frac{C}{x} \right|\]
\[ \Rightarrow \tan \left( \frac{y}{x} \right) = \log \left| \frac{C}{x} \right|\text{ is the required solution }.\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.09 [Page 83]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.09 | Q 22 | Page 83

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\frac{dy}{dx} = x \log x\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

xy (y + 1) dy = (x2 + 1) dx


Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

xy dy = (y − 1) (x + 1) dx


\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

x2 dy + y (x + y) dx = 0


\[xy\frac{dy}{dx} = x^2 - y^2\]

y ex/y dx = (xex/y + y) dy


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


The solution of the differential equation y1 y3 = y22 is


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


y2 dx + (x2 − xy + y2) dy = 0


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Solve the following differential equation.

`dy/dx + 2xy = x`


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Solve: ydx – xdy = x2ydx.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


Solve the differential equation

`x + y dy/dx` = x2 + y2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×