English

[ X √ X 2 + Y 2 − Y 2 ] D X + X Y D Y = 0 - Mathematics

Advertisements
Advertisements

Question

\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]
Sum

Solution

We have, 
\[\left[ x\sqrt{x^2 + y^2} - y^2 \right]dx + xy\ dy = 0\]
\[\frac{dy}{dx} = \frac{y^2 - x\sqrt{x^2 + y^2}}{xy}\]
This is a homogeneous differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{v^2 x^2 - x\sqrt{x^2 + v^2 x^2}}{v x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{v^2 - \sqrt{1 + v^2}}{v}\]
\[ \Rightarrow v + x\frac{dv}{dx} = v - \frac{\sqrt{1 + v^2}}{v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{- \sqrt{1 + v^2}}{v}\]
\[ \Rightarrow \frac{v}{\sqrt{1 + v^2}}dv = - \frac{1}{x}dx\]
\[\text{ Putting }1 + v^2 = t,\text{ we get }\]
\[v\ dv = \frac{dt}{2}\]
\[ \therefore \frac{1}{2\sqrt{t}}dt = - \frac{1}{x}dx\]
Integrating both sides, we get 
\[\int \frac{1}{2\sqrt{t}}dt = - \int\frac{1}{x}dx\]
\[ \Rightarrow \sqrt{t} = - \log \left| x \right| + \log C . . . . . (1)\]
Substituting the value of `t` in (1), we get
\[\sqrt{1 + v^2} = \log \left| \frac{C}{x} \right|\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \sqrt{y^2 + x^2} = x \log \left| \frac{C}{x} \right|\]
\[\text{ Hence, }\sqrt{y^2 + x^2} = x \log \left| \frac{C}{x} \right| \text{ is the required solution.}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.09 [Page 83]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.09 | Q 21 | Page 83

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

(1 + x2) dy = xy dx


Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

(1 − x2) dy + xy dx = xy2 dx


\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

`dy/dx + y = e ^-x`


The solution of `dy/dx + x^2/y^2 = 0` is ______


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


Solve the differential equation:

`e^(dy/dx) = x`


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Solve the differential equation

`x + y dy/dx` = x2 + y2


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×