Advertisements
Advertisements
Question
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Solution
xy = log y + k
Differentiating w.r.t. x, we get
`x dy/dx+ y (1) = 1/y.dy/dx`
∴ `xy dy/dx+ y ^2 = dy/dx`
∴ `dy/dx- x y dy/dx = y^2`
∴ `(1-xy)dy/dx = y^2`
∴ `y' (1-xy) = y^2`
∴ Given function is a solution of the given differential equation.
APPEARS IN
RELATED QUESTIONS
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
Define a differential equation.
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Solve the differential equation
`y (dy)/(dx) + x` = 0