Advertisements
Advertisements
Question
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Solution
(x2 − y2 ) dx + 2xy dy = 0
∴ 2xy dy = (y2 - x2) dx
∴ `dy/dx = (y^2 - x^2)/(2xy) ......(i)`
Put y = tx ...(ii)
Differentiating w.r.t. x, we get
`dy/dx = t +x dt/dx ...(iii)`
Substituting (ii) and (iii) in (i), we get
`t + x dt/dx = (t^2 x^2-x^2)/(2tx^2)`
∴ `x dt/dx = (t^2 - 1)/(2t )- t = (-(1+t^2))/(2t)`
∴ `2t/(1+t^2) dt = - dx/x`
Integrating on both sides, we get
`int 2t/(1+t^2) dt = - int dx/x`
∴ log |1 + t2| = -log |x| + log |c|
∴`log | 1+y^2/x^2| = log |c/x|`
∴ `(x^2 + y^2)/x^2 = c/x`
∴ x2 + y2 = cx
APPEARS IN
RELATED QUESTIONS
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Solve the differential equation `("d"y)/("d"x) + y` = e−x
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
Solve the following differential equation y2dx + (xy + x2) dy = 0
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?