Advertisements
Advertisements
Question
Solution
We have,
\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]
\[ \Rightarrow \frac{dy}{dx} = - \frac{\cos x \sin y}{\cos y}\]
\[ \Rightarrow \frac{\cos y}{\sin y}dy = - \cos x dx\]
\[ \Rightarrow \cot y dy = - \cos x dx\]
Integrating both sides, we get
\[\int\cot y dy = - \int\cos x dx\]
\[ \Rightarrow \log \left| \sin y \right| = - \sin x + C\]
\[\text{ Hence,} \log \left| \sin y \right| = - \sin x +\text{ C is the required solution .} \]
APPEARS IN
RELATED QUESTIONS
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
y (1 + ex) dy = (y + 1) ex dx
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Solve the following differential equation.
`dy/dx + y` = 3
Solve the differential equation:
dr = a r dθ − θ dr
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of: