Advertisements
Advertisements
Question
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
Solution
We have,
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{ where }P = \cot x\text{ and }Q = 4x \text{ cosec }x \]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int\cot x dx} \]
\[ = e^{log\left| \sin x \right|} = \sin x\]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }I . F . = \sin x,\text{ we get }\]
\[\sin x\left( \frac{dy}{dx} + y \cot x \right) = \sin x\left( 4x\text{ cosec }x \right)\]
\[ \Rightarrow \sin x\left( \frac{dy}{dx} + y \cot x \right) = 4x\]
Integrating both sides with respect to x, we get
\[y \sin x = 4\int x dx + C\]
\[ \Rightarrow y \sin x = 2 x^2 + C . . . . . \left( 2 \right)\]
Now,
\[y\left( \frac{\pi}{2} \right) = 0\]
\[ \therefore 0 \times \sin\left( \frac{\pi}{2} \right) = 2 \left( \frac{\pi}{2} \right)^2 + C\]
\[ \Rightarrow C = - \frac{\pi^2}{2}\]
\[\text{ Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[y \sin x = 2 x^2 - \frac{\pi^2}{2}\]
\[\text{ Hence, }y \sin x = 2 x^2 - \frac{\pi^2}{2}\text{ is the required solution .}\]
APPEARS IN
RELATED QUESTIONS
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The solution of the differential equation y1 y3 = y22 is
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
The function y = ex is solution ______ of differential equation
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0