Advertisements
Advertisements
Question
Solution
We have,
\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]
\[ \Rightarrow dy = \left\{ x^5 \tan^{- 1} \left( x^3 \right) \right\}dx\]
Integrating both sides, we get
\[\int dy = \int x^5 \tan^{- 1} \left( x^3 \right)dx\]
\[ \Rightarrow y = \int x^5 \tan^{- 1} \left( x^3 \right)dx\]
\[\text{Putting }t = x^3 ,\text{ we get }\]
\[dt = 3 x^2 dx\]
\[ \therefore y = \frac{1}{3}\int t \tan^{- 1} t dt\]
\[ = \frac{1}{3}\left[ \tan^{- 1} t\int t dt - \int\left\{ \frac{d}{dt}\left( \tan^{- 1} t \right)\int t dx \right\}dt \right]\]
\[ = \frac{1}{3} \times \frac{t^2 \tan^{- 1} t}{2} - \frac{1}{6}\int\frac{t^2}{\left( 1 + t^2 \right)}dt\]
\[ = \frac{t^2 \tan^{- 1} t}{6} - \frac{1}{6}\int\frac{t^2 + 1 - 1}{\left( 1 + t^2 \right)}dt\]
\[ = \frac{t^2 \tan^{- 1} t}{6} - \frac{1}{6}\int dt + \frac{1}{6}\int\frac{1}{1 + t^2}dt\]
\[ = \frac{t^2 \tan^{- 1} t}{6} - \frac{1}{6}t + \frac{\tan^{- 1} t}{6} + C\]
\[ = \frac{x^6 \tan^{- 1} x^3}{6} - \frac{1}{6} x^3 + \frac{\tan^{- 1} x^3}{6} + C\]
\[ = \frac{1}{6}\left( x^6 \tan^{- 1} x^3 - x^3 + \tan^{- 1} x^3 \right) + C\]
\[\text{Hence, }y = \frac{1}{6}\left( x^6 \tan^{- 1} x^3 - x^3 + \tan^{- 1} x^3 \right) +\text{C is the solution to the given differential equation.}\]
APPEARS IN
RELATED QUESTIONS
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
(1 − x2) dy + xy dx = xy2 dx
(y + xy) dx + (x − xy2) dy = 0
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
(y2 − 2xy) dx = (x2 − 2xy) dy
(x + 2y) dx − (2x − y) dy = 0
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
Solve the following differential equation.
`(x + y) dy/dx = 1`
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
Solve the differential equation:
dr = a r dθ − θ dr
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
The function y = ex is solution ______ of differential equation
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of: