English

Hence, the given function is the solution to the given differential equation. c − x 1 + c x is a solution of the differential equation ( 1 + x 2 ) d y d x + ( 1 + y 2 ) = 0 . - Mathematics

Advertisements
Advertisements

Question

Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].

Sum

Solution

We have,

\[y = \frac{c - x}{1 + cx} .........(1)\]

Differentiating both sides of (1) with respect to x, we get

\[\frac{dy}{dx} = \frac{\left( 1 + cx \right)\left( - 1 \right) - \left( c - x \right)\left( c \right)}{\left( 1 + cx \right)^2}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 1 - cx - c^2 + cx}{\left( 1 + cx \right)^2}\]
\[ \Rightarrow \frac{dy}{dx} = - \frac{1 + c^2}{\left( 1 + cx \right)^2} .............\left( 2 \right)\]
Now,
\[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right)\]
\[ = - \left( 1 + x^2 \right)\frac{\left( 1 + c^2 \right)}{\left( 1 + cx \right)^2} + \left\{ 1 + \frac{\left( c - x \right)^2}{\left( 1 + cx \right)^2} \right\} .........\left[\text{Using }\left( 1 \right)\text{ and  }\left( 2 \right) \right]\]
\[ = - \frac{\left( 1 + x^2 \right)\left( 1 + c^2 \right)}{\left( 1 + cx \right)^2} + \frac{\left( 1 + cx \right)^2 + \left( c - x \right)^2}{\left( 1 + cx \right)^2}\]
\[ = - \frac{\left( 1 + x^2 \right)\left( 1 + c^2 \right)}{\left( 1 + cx \right)^2} + \frac{1 + 2cx + c^2 x^2 + c^2 - 2cx + x^2}{\left( 1 + cx \right)^2}\]
\[ = - \frac{\left( 1 + x^2 \right)\left( 1 + c^2 \right)}{\left( 1 + cx \right)^2} + \frac{\left( 1 + x^2 \right) + c^2 \left( 1 + x^2 \right)}{\left( 1 + cx \right)^2}\]
\[ = - \frac{\left( 1 + x^2 \right)\left( 1 + c^2 \right)}{\left( 1 + cx \right)^2} + \frac{\left( 1 + x^2 \right)\left( 1 + c^2 \right)}{\left( 1 + cx \right)^2} = 0\]
\[ \Rightarrow \left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\]

Hence, the given function is the solution to the given differential equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.03 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.03 | Q 11 | Page 25

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\sqrt{1 - x^4} dy = x\ dx\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]

In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

(x + y) (dx − dy) = dx + dy


\[xy\frac{dy}{dx} = x^2 - y^2\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


Solve the differential equation:

`e^(dy/dx) = x`


`xy dy/dx  = x^2 + 2y^2`


 `dy/dx = log x`


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×