English

Solve the following differential equation dydx = x2y + y - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following differential equation `("d"y)/("d"x)` = x2y + y

Sum

Solution

`("d"y)/("d"x)` = x2y + y

∴ `("d"y)/("d"x)` = y(x2 + 1)

∴ `("d"y)/y` = (x2 + 1) dx

Integrating on both sides, we get

`int ("d"y)/y = int(x^2 + 1)  "d"x`

∴ log |y| = `x^3/3 + x + "c"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.6: Differential Equations - Attempt the following questions II

APPEARS IN

SCERT Maharashtra Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC
Chapter 2.6 Differential Equations
Attempt the following questions II | Q 6

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

(1 + x2) dy = xy dx


Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

(y + xy) dx + (x − xy2) dy = 0


\[\frac{dy}{dx} = 1 - x + y - xy\]

dy + (x + 1) (y + 1) dx = 0


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

\[\frac{dy}{dx} = \left( x + y \right)^2\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


2xy dx + (x2 + 2y2) dy = 0


3x2 dy = (3xy + y2) dx


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Form the differential equation from the relation x2 + 4y2 = 4b2


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve the following differential equation.

`dy/dx + 2xy = x`


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


Solve the following differential equation.

dr + (2r)dθ= 8dθ


Solve the differential equation:

dr = a r dθ − θ dr


Solve

`dy/dx + 2/ x y = x^2`


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Solve the following differential equation y2dx + (xy + x2) dy = 0


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


Solve the differential equation `"dy"/"dx" + 2xy` = y


Solve: ydx – xdy = x2ydx.


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×