English

Find the Particular Solution of Edy/Dx = X + 1, Given that Y = 3, When X = 0. - Mathematics

Advertisements
Advertisements

Question

Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.

Solution

We have, 
\[ e^\frac{dy}{dx} = x + 1\]
\[ \Rightarrow \frac{dy}{dx} = \log \left( x + 1 \right)\]
\[ \Rightarrow dy = \log \left( x + 1 \right) dx\]
Integrating both sides, we get 
\[\int dy = \int\log \left( x + 1 \right) dx\]
\[ \Rightarrow y = \log \left( x + 1 \right)\int1 dx - \int\left[ \frac{d}{dx}\left\{ \log \left( x + 1 \right) \right\}\int1 dx \right]dx\]
\[ \Rightarrow y = x \log \left( x + 1 \right) - \int\frac{1}{x + 1} \times x dx\]
\[ \Rightarrow y = x \log \left( x + 1 \right) - \int\left( 1 - \frac{1}{x + 1} \right) dx\]
\[ \Rightarrow y = x \log \left( x + 1 \right) - \int dx + \int\frac{1}{x + 1}dx\]
\[ \Rightarrow y = x \log \left( x + 1 \right) - x + \log \left| x + 1 \right| + C\]
\[ \Rightarrow y = \left( x + 1 \right) \log \left| x + 1 \right| - x + C . . . . . (1)\]
It is given that at x = 0 and y = 3 . 
Substituing the values of x and y in (1), we get 
\[C = 3\]
Therefore, substituting the value of C in (1), we get
\[y = \left( x + 1 \right) \log \left| x + 1 \right| - x + 3\]
\[\text{ Hence, }y = \left( x + 1 \right) \log \left| x + 1 \right| - x + 3 \text{ is the required solution . }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 49 | Page 56

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

\[\frac{dy}{dx} = \tan^{- 1} x\]


\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

(1 + x2) dy = xy dx


\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

y (1 + ex) dy = (y + 1) ex dx


\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


Define a differential equation.


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Solve the following differential equation.

`dy/dx + y` = 3


The solution of `dy/dx + x^2/y^2 = 0` is ______


y dx – x dy + log x dx = 0


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


Solve the differential equation xdx + 2ydy = 0


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×