Advertisements
Advertisements
Question
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
Solution
We have,
\[ e^\frac{dy}{dx} = x + 1\]
\[ \Rightarrow \frac{dy}{dx} = \log \left( x + 1 \right)\]
\[ \Rightarrow dy = \log \left( x + 1 \right) dx\]
Integrating both sides, we get
\[\int dy = \int\log \left( x + 1 \right) dx\]
\[ \Rightarrow y = \log \left( x + 1 \right)\int1 dx - \int\left[ \frac{d}{dx}\left\{ \log \left( x + 1 \right) \right\}\int1 dx \right]dx\]
\[ \Rightarrow y = x \log \left( x + 1 \right) - \int\frac{1}{x + 1} \times x dx\]
\[ \Rightarrow y = x \log \left( x + 1 \right) - \int\left( 1 - \frac{1}{x + 1} \right) dx\]
\[ \Rightarrow y = x \log \left( x + 1 \right) - \int dx + \int\frac{1}{x + 1}dx\]
\[ \Rightarrow y = x \log \left( x + 1 \right) - x + \log \left| x + 1 \right| + C\]
\[ \Rightarrow y = \left( x + 1 \right) \log \left| x + 1 \right| - x + C . . . . . (1)\]
It is given that at x = 0 and y = 3 .
Substituing the values of x and y in (1), we get
\[C = 3\]
Therefore, substituting the value of C in (1), we get
\[y = \left( x + 1 \right) \log \left| x + 1 \right| - x + 3\]
\[\text{ Hence, }y = \left( x + 1 \right) \log \left| x + 1 \right| - x + 3 \text{ is the required solution . }\]
APPEARS IN
RELATED QUESTIONS
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
(1 + x2) dy = xy dx
y (1 + ex) dy = (y + 1) ex dx
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
Define a differential equation.
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
Solve the following differential equation.
`dy/dx + y` = 3
The solution of `dy/dx + x^2/y^2 = 0` is ______
y dx – x dy + log x dx = 0
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Solve the differential equation xdx + 2ydy = 0
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.