English

D Y D X Cos ( X − Y ) = 1 - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]
Sum

Solution

We have, 
\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[ \Rightarrow \frac{dy}{dx} = \frac{1}{\cos\left( x - y \right)}\]

Putting x - y = v

\[ \Rightarrow 1 - \frac{dy}{dx} = \frac{dv}{dx}\]

\[ \Rightarrow \frac{dy}{dx} = 1 - \frac{dv}{dx}\]

\[ \therefore 1 - \frac{dv}{dx} = \frac{1}{\cos v}\]

\[ \Rightarrow \frac{dv}{dx} = 1 - \frac{1}{\cos v}\]

\[ \Rightarrow \frac{dv}{dx} = \frac{\cos v - 1}{\cos v}\]

\[ \Rightarrow \frac{\cos v}{\cos v - 1}dv = dx\]

Integrating both sides, we get

\[\int\frac{\cos v}{\cos v - 1}dv = \int dx\]

\[ \Rightarrow - \int\frac{\cos v\left( 1 + \cos v \right)}{1 - \cos^2 v}dv = \int dx\]

\[ \Rightarrow - \int\frac{\cos v\left( 1 + \cos v \right)}{\sin^2 v}dv = \int dx\]

\[ \Rightarrow - \int\left( \cot v\ cosec\ v + \cot^2 v \right)dv = \int dx\]

\[ \Rightarrow - \int\left( \cot v\ cosec\ v + {cosec}^2 v - 1 \right)dv = \int dx\]

\[ \Rightarrow - \left( - cosec\ v - \cot v - v \right) = x + C\]

\[ \Rightarrow cosec \left( x - y \right) + \cot \left( x - y \right) + x - y = x + C\]

\[ \Rightarrow cosec \left( x - y \right) + \cot \left( x - y \right) - y = C\]

\[ \Rightarrow \frac{1 + \cos \left( x - y \right)}{\sin \left( x - y \right)} - y = C\]

\[ \Rightarrow \cot\left( \frac{x - y}{2} \right) = y + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.08 [Page 66]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.08 | Q 2 | Page 66

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[x^2 \left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + y^4 = 0\]

Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\frac{dy}{dx} = x \log x\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

y (1 + ex) dy = (y + 1) ex dx


dy + (x + 1) (y + 1) dx = 0


Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

y ex/y dx = (xex/y + y) dy


3x2 dy = (3xy + y2) dx


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


The solution of the differential equation y1 y3 = y22 is


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


For each of the following differential equations find the particular solution.

(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

`dy/dx + y` = 3


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


x2y dx – (x3 + y3) dy = 0


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`


Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×