Advertisements
Advertisements
Question
Solution
We have,
\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]
\[ \Rightarrow \frac{dy}{dx} = \frac{1}{\cos\left( x - y \right)}\]
Putting x - y = v
\[ \Rightarrow 1 - \frac{dy}{dx} = \frac{dv}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = 1 - \frac{dv}{dx}\]
\[ \therefore 1 - \frac{dv}{dx} = \frac{1}{\cos v}\]
\[ \Rightarrow \frac{dv}{dx} = 1 - \frac{1}{\cos v}\]
\[ \Rightarrow \frac{dv}{dx} = \frac{\cos v - 1}{\cos v}\]
\[ \Rightarrow \frac{\cos v}{\cos v - 1}dv = dx\]
Integrating both sides, we get
\[\int\frac{\cos v}{\cos v - 1}dv = \int dx\]
\[ \Rightarrow - \int\frac{\cos v\left( 1 + \cos v \right)}{1 - \cos^2 v}dv = \int dx\]
\[ \Rightarrow - \int\frac{\cos v\left( 1 + \cos v \right)}{\sin^2 v}dv = \int dx\]
\[ \Rightarrow - \int\left( \cot v\ cosec\ v + \cot^2 v \right)dv = \int dx\]
\[ \Rightarrow - \int\left( \cot v\ cosec\ v + {cosec}^2 v - 1 \right)dv = \int dx\]
\[ \Rightarrow - \left( - cosec\ v - \cot v - v \right) = x + C\]
\[ \Rightarrow cosec \left( x - y \right) + \cot \left( x - y \right) + x - y = x + C\]
\[ \Rightarrow cosec \left( x - y \right) + \cot \left( x - y \right) - y = C\]
\[ \Rightarrow \frac{1 + \cos \left( x - y \right)}{\sin \left( x - y \right)} - y = C\]
\[ \Rightarrow \cot\left( \frac{x - y}{2} \right) = y + C\]
APPEARS IN
RELATED QUESTIONS
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
y (1 + ex) dy = (y + 1) ex dx
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
y ex/y dx = (xex/y + y) dy
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
The solution of the differential equation y1 y3 = y22 is
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve the following differential equation.
`dy/dx + y` = 3
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
x2y dx – (x3 + y3) dy = 0
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Solve: `("d"y)/("d"x) + 2/xy` = x2
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]