English

Solve the Differential Equation:"X"("D""Y")/("D""X")+"Y"=3"X"^2-2 - Mathematics

Advertisements
Advertisements

Question

Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`

Sum

Solution

`"x"("dy")/("dx")+"y"=3"x"^2-2`

⇒ `("dy")/("dx")+1/"x" . "y"=3"x"-2/"x""`

which is linear in y     

`"I.F" : e ^(int 1/"x""dx") = e^log"x" ="x"`

General solution is :   

`"y.x"= int(3"x"^2-2)"dx"`

`"xy" = "x"^3-2"x"+"C"`

⇒  `"y" = "x"^2-2+"C"/"x"`

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March)

APPEARS IN

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

y ex/y dx = (xex/y + y) dy


(y2 − 2xy) dx = (x2 − 2xy) dy


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the following differential equation.

`dy/dx + 2xy = x`


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


y dx – x dy + log x dx = 0


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×