English

Find the Particular Solution of the Differential Equation D Y D X = X Y X 2 + Y 2 Given that Y = 1 When X = 0. - Mathematics

Advertisements
Advertisements

Question

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 

Sum

Solution

\[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\]          .....(1)
\[\Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]
Substituting the value of y = xv and \[\frac{dy}{dx} = v + x\frac{dv}{dx}\] in (1), we get
\[\therefore v + x\frac{dv}{dx} = \frac{x^2 v}{x^2 + x^2 v^2}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v}{1 + v^2} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{- v^3}{1 + v^2}\]
\[ \Rightarrow \frac{1 + v^2}{- v^3}dv = \frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1 + v^2}{- v^3}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2 v^2} - \log v = \log x + C\]
\[\Rightarrow \frac{1}{2 \left( \frac{y}{x} \right)^2} - \log\frac{y}{x} = \log x + C\]
\[ \Rightarrow \frac{x^2}{2 y^2} - \log\frac{y}{x} = \log x + C . . . . . \left( 2 \right)\]
\[ \Rightarrow \frac{0}{2} - \log\frac{1}{0} = \log0 + C\]
\[ \Rightarrow C = 0\]
Substituting the value of C in (2), we get
\[\frac{x^2}{2 y^2} - \log\frac{y}{x} = \log x\]
\[ \Rightarrow \frac{x^2}{2 y^2} = \log x + \log\frac{y}{x}\]
\[ \Rightarrow \frac{x^2}{2 y^2} = \log y\]


 

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.09 [Page 84]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.09 | Q 39 | Page 84

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[5\frac{dy}{dx} = e^x y^4\]

\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

(x2 − y2) dx − 2xy dy = 0


\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


Define a differential equation.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


y2 dx + (x2 − xy + y2) dy = 0


Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Form the differential equation from the relation x2 + 4y2 = 4b2


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


Solve the differential equation:

`e^(dy/dx) = x`


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×