Advertisements
Advertisements
Question
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solution
\[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] .....(1)
\[\Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]
Substituting the value of y = xv and \[\frac{dy}{dx} = v + x\frac{dv}{dx}\] in (1), we get
\[\therefore v + x\frac{dv}{dx} = \frac{x^2 v}{x^2 + x^2 v^2}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v}{1 + v^2} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{- v^3}{1 + v^2}\]
\[ \Rightarrow \frac{1 + v^2}{- v^3}dv = \frac{1}{x}dx\]
\[ \Rightarrow \int\frac{1 + v^2}{- v^3}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2 v^2} - \log v = \log x + C\]
\[\Rightarrow \frac{1}{2 \left( \frac{y}{x} \right)^2} - \log\frac{y}{x} = \log x + C\]
\[ \Rightarrow \frac{x^2}{2 y^2} - \log\frac{y}{x} = \log x + C . . . . . \left( 2 \right)\]
\[ \Rightarrow \frac{0}{2} - \log\frac{1}{0} = \log0 + C\]
\[ \Rightarrow C = 0\]
Substituting the value of C in (2), we get
\[\frac{x^2}{2 y^2} - \log\frac{y}{x} = \log x\]
\[ \Rightarrow \frac{x^2}{2 y^2} = \log x + \log\frac{y}{x}\]
\[ \Rightarrow \frac{x^2}{2 y^2} = \log y\]
APPEARS IN
RELATED QUESTIONS
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
(x2 − y2) dx − 2xy dy = 0
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
Define a differential equation.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
y2 dx + (x2 − xy + y2) dy = 0
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Form the differential equation from the relation x2 + 4y2 = 4b2
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
Solve the differential equation:
`e^(dy/dx) = x`
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]