English

Solve the Equation for X: `Sin^(-1) 5/X + Sin^(-1) 12/X = Pi/2, X != 0` - Mathematics

Advertisements
Advertisements

Question

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`

Solution

`sin^(-1) (5/x) + sin^(-1) (12/x) = pi/2`

`sin^(-1) + cos^(-1) sqrt(1-144/x^2) = pi/2`

Let `sin^(-1)  12/x =  beta`

`12/x = sin beta = "OPP"/"HYP"`

`sqrt(x^2 - 144)/x = cos beta = "adj"/"HYP"`

`beta = cos^(-1) (sqrt(x^2 - 144)/x^2)`

`:. 5/x = sqrt(1- 144/x^2)`

`25/x^2 = 1 - 144/x^2`

`169/x^2 = 1`

`x^2 = 169`

x = 13

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March)

APPEARS IN

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

(x + 2y) dx − (2x − y) dy = 0


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?


Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×