Advertisements
Advertisements
Question
Solution
We have,
\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]
\[ \Rightarrow \sqrt{\left( 1 + x^2 \right)\left( 1 + y^2 \right)} + xy\frac{dy}{dx} = 0\]
\[ \Rightarrow xy\frac{dy}{dx} = - \sqrt{\left( 1 + x^2 \right)\left( 1 + y^2 \right)}\]
\[ \Rightarrow xy\frac{dy}{dx} = - \sqrt{\left( 1 + x^2 \right)}\sqrt{\left( 1 + y^2 \right)}\]
\[ \Rightarrow \frac{y}{\sqrt{\left( 1 + y^2 \right)}}dy = - \frac{\sqrt{\left( 1 + x^2 \right)}}{x}dx\]
Integrating both sides, we get
\[ \Rightarrow \int\frac{y}{\sqrt{\left( 1 + y^2 \right)}}dy = - \int\frac{\sqrt{\left( 1 + x^2 \right)}}{x}dx\]
\[ \Rightarrow \int\frac{y}{\sqrt{\left( 1 + y^2 \right)}}dy = - \int\frac{x\sqrt{\left( 1 + x^2 \right)}}{x^2}dx\]
\[\text{ Putting }1 + y^2 = t\text{ and }1 + x^2 = u^2 \]
\[ \Rightarrow 2y dy = dt \text{ and }2x dx = 2udu\]
\[ \Rightarrow y dy = \frac{dt}{2}\text{ and }xdx = udu\]
\[ \therefore\text{ Integral becomes, }\]
\[\frac{1}{2}\int\frac{dt}{\sqrt{t}} = - \int\frac{u \times u}{u^2 - 1}du\]
\[ \Rightarrow \sqrt{t} = - \int\frac{u^2}{u^2 - 1}du\]
\[ \Rightarrow \sqrt{t} = - \int\frac{u^2}{u^2 - 1}du\]
\[ \Rightarrow \sqrt{t} = - \int1 + \frac{1}{u^2 - 1}du\]
\[ \Rightarrow \sqrt{t} = - \int(1)du - \int\frac{1}{u^2 - 1}du\]
\[ \Rightarrow \sqrt{t} = - u - \frac{1}{2}\log\left| \frac{u - 1}{u + 1} \right| + C\]
\[ \Rightarrow \sqrt{1 + y^2} = - \sqrt{1 + x^2} - \frac{1}{2}\log\left| \frac{\sqrt{1 + x^2} - 1}{\sqrt{1 + x^2} + 1} \right| + C\]
\[ \Rightarrow \sqrt{1 + y^2} + \sqrt{1 + x^2} + \frac{1}{2}\log\left| \frac{\sqrt{1 + x^2} - 1}{\sqrt{1 + x^2} + 1} \right| = C\]
APPEARS IN
RELATED QUESTIONS
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
y (1 + ex) dy = (y + 1) ex dx
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
x2 dy + y (x + y) dx = 0
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
Solve: ydx – xdy = x2ydx.
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is