English

Choose the correct alternative: General solution of y-xdydx = 0 is - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is

Options

  • `3log x + 7/y` = c

  • `2log x + 3/y = c`

  • log x – log y = log c

  • `3log y + 2/x` = c

MCQ

Solution

log x – log y = log c

shaalaa.com
  Is there an error in this question or solution?
Chapter 1.8: Differential Equation and Applications - Q.1

RELATED QUESTIONS

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x


\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

(y + xy) dx + (x − xy2) dy = 0


Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \sec\left( x + y \right)\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

2xy dx + (x2 + 2y2) dy = 0


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve

`dy/dx + 2/ x y = x^2`


y dx – x dy + log x dx = 0


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×