English

D Y D X = 2 E 2 X Y 2 , Y ( 0 ) = − 1 - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

Solution

\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]
\[ \Rightarrow \frac{1}{y^2}dy = 2 e^{2x} dx\]
Integrating both sides, we get
\[\int\frac{1}{y^2}dy = 2\int e^{2x} dx\]
\[ \Rightarrow \frac{- 1}{y} = e^{2x} + C . . . . . (1)\]
We know that at x = 0, y = - 1 . 
Substituting the values of x and y in (1), we get
\[1 = 1 + C\]
\[ \Rightarrow C = 0\]
Substituting the value of C in (1), we get
\[- \frac{1}{y} = e^{2x} \]
\[ \Rightarrow y = - e^{- 2x} \]
\[\text{ Hence, }y = - e^{- 2x}\text{ is the required solution }.\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 45.3 | Page 56

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


\[\frac{dy}{dx} + 2x = e^{3x}\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

(y + xy) dx + (x − xy2) dy = 0


dy + (x + 1) (y + 1) dx = 0


\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

3x2 dy = (3xy + y2) dx


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

`dy/dx + y = e ^-x`


Solve the following differential equation.

`dy/dx + y` = 3


The solution of `dy/dx + x^2/y^2 = 0` is ______


Solve the differential equation:

dr = a r dθ − θ dr


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


The function y = ex is solution  ______ of differential equation


Solve: ydx – xdy = x2ydx.


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×