Advertisements
Advertisements
Question
Solution
We have,
\[\frac{dy}{dx} = e^{x + y} + e^y x^3 \]
\[ \Rightarrow \frac{dy}{dx} = e^x e^y + e^y x^3 \]
\[ \Rightarrow \frac{dy}{dx} = e^y \left( e^x + x^3 \right)\]
\[ \Rightarrow \left( e^x + x^3 \right) dx = \frac{1}{e^y}dy\]
Integrating both sides, we get
\[\int\left( e^x + x^3 \right) dx = \int\frac{1}{e^y}dy\]
\[ \Rightarrow e^x + \frac{x^4}{4} = - e^{- y} + C\]
\[ \Rightarrow e^x + e^{- y} + \frac{x^4}{4} = C\]
\[\text{ Hence, } e^x + e^{- y} + \frac{x^4}{4} =\text{ C is the required solution .} \]
APPEARS IN
RELATED QUESTIONS
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
C' (x) = 2 + 0.15 x ; C(0) = 100
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
Define a differential equation.
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
y2 dx + (xy + x2)dy = 0
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.