English

√ 1 + ( D Y D X ) 2 = ( C D 2 Y D X 2 ) 1 / 3 - Mathematics

Advertisements
Advertisements

Question

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]
Sum

Solution

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^\frac{1}{3} \]
Squaring both sides, we get
\[ \Rightarrow 1 + \left( \frac{dy}{dx} \right)^2 = \left( c\frac{d^2 y}{d x^2} \right)^\frac{2}{3} \]
Taking cubes of both sides, we get
\[ \Rightarrow \left( c\frac{d^2 y}{d x^2} \right)^2 = \left[ 1 + \left( \frac{dy}{dx} \right)^2 \right]^3 \]
\[ \Rightarrow c^2 \left( \frac{d^2 y}{d x^2} \right)^2 = 1 + 3 \left( \frac{dy}{dx} \right)^2 + 3 \left( \frac{dy}{dx}\right)^4 + \left( \frac{dy}{dx} \right)^6\]
In this differential equation, the order of the highest order derivative is 2 and its power is 2. So, it is a differential equation of order 2 and degree 2.
It is a non-linear differential equation, as its degree is more than 1.
shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.01 [Page 5]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.01 | Q 4 | Page 5

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\sin^4 x\frac{dy}{dx} = \cos x\]

\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

(1 + x2) dy = xy dx


\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

\[x\frac{dy}{dx} + y = y^2\]

\[x\frac{dy}{dx} + \cot y = 0\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

tan y dx + sec2 y tan x dy = 0


tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

2xy dx + (x2 + 2y2) dy = 0


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


The solution of `dy/dx + x^2/y^2 = 0` is ______


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Solve: ydx – xdy = x2ydx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×