Advertisements
Advertisements
Question
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
Solution
We have,
y = xex + ex .....(1)
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = x e^x + e^x + e^x \]
\[ \Rightarrow \frac{dy}{dx} = x e^x + 2 e^x ...........(2)\]
Differentiating both sides of (2) with respect to x, we get
\[\frac{d^2 y}{d x^2} = x e^x + e^x + 2 e^x \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = x e^x + 3 e^x \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = 2\left( x e^x + 2 e^x \right) - \left( x e^x + e^x \right)\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = 2\frac{dy}{dx} - y ...........\left[\text{Using (1) and (2)}\right]\]
\[ \Rightarrow \frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0\]
\[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0\]
It is the given differential equation.
Thus, y = xex + ex satisfies the given differential equation.
Also, when \[x = 0, y = 0 + 1 = 1,\text{ i.e. }y(0) = 1\]
And, when \[x = 0, y' = 0 + 2 = 2,\text{ i.e. }y'(0) = 2\]
Hence, y = xex + ex is the solution to the given initial value problem.
APPEARS IN
RELATED QUESTIONS
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
dy + (x + 1) (y + 1) dx = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.
(x2 − y2) dx − 2xy dy = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
Define a differential equation.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.