English

Differential Equation D 2 Y D X 2 − 2 D Y D X + Y = 0 , Y ( 0 ) = 1 , Y ′ ( 0 ) = 2 Function Y = Xex + Ex - Mathematics

Advertisements
Advertisements

Question

Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex

Sum

Solution

We have,

y = xex + ex                .....(1)

Differentiating both sides of (1) with respect to x, we get

\[\frac{dy}{dx} = x e^x + e^x + e^x \]

\[ \Rightarrow \frac{dy}{dx} = x e^x + 2 e^x ...........(2)\]

Differentiating both sides of (2) with respect to x, we get

\[\frac{d^2 y}{d x^2} = x e^x + e^x + 2 e^x \]

\[ \Rightarrow \frac{d^2 y}{d x^2} = x e^x + 3 e^x \]

\[ \Rightarrow \frac{d^2 y}{d x^2} = 2\left( x e^x + 2 e^x \right) - \left( x e^x + e^x \right)\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = 2\frac{dy}{dx} - y ...........\left[\text{Using (1) and (2)}\right]\]

\[ \Rightarrow \frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0\]

\[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0\]

It is the given differential equation.

Thus, y = xex + ex satisfies the given differential equation.

Also, when \[x = 0, y = 0 + 1 = 1,\text{ i.e. }y(0) = 1\]

And, when \[x = 0, y' = 0 + 2 = 2,\text{ i.e. }y'(0) = 2\]

Hence, y = xex + ex is the solution to the given initial value problem.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.04 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.04 | Q 9 | Page 28

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^2 y}{d x^2} + 4y = 0\]

Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


\[\frac{dy}{dx} = \log x\]

\[\sin^4 x\frac{dy}{dx} = \cos x\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

dy + (x + 1) (y + 1) dx = 0


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

(x2 − y2) dx − 2xy dy = 0


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


Define a differential equation.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×