Advertisements
Advertisements
Question
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Solution
The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int bb("e"^(-2y)) "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ e–2y + 2sin x = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ `1 + 2(1/2)` = c
∴ c = 2
∴ particular solution is e–2y + 2sin x = 2
APPEARS IN
RELATED QUESTIONS
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
x cos2 y dx = y cos2 x dy
(y + xy) dx + (x − xy2) dy = 0
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
Solve the differential equation:
dr = a r dθ − θ dr
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Solve: `("d"y)/("d"x) + 2/xy` = x2
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
Solve: ydx – xdy = x2ydx.
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
Solve the differential equation
`y (dy)/(dx) + x` = 0
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.