English

Find the particular solution of the following differential equation ("d"y)/("d"x) = e2y cos x, when x = pi/6, y = 0. Solution: The given D.E. is ("d"y)/("d"x) = e2y cos x - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`

Fill in the Blanks
Sum

Solution

The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int bb("e"^(-2y))  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

e–2y + 2sin x = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ `1 +  2(1/2)` = c

∴ c = 2 

∴ particular solution is e–2y + 2sin x = 2 

shaalaa.com
  Is there an error in this question or solution?
Chapter 1.8: Differential Equation and Applications - Q.6

APPEARS IN

SCERT Maharashtra Mathematics and Statistics (Commerce) [English] 12 Standard HSC
Chapter 1.8 Differential Equation and Applications
Q.6 | Q 8

RELATED QUESTIONS

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


x cos2 y  dx = y cos2 x dy


\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

(y + xy) dx + (x − xy2) dy = 0


\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


Solve the differential equation:

dr = a r dθ − θ dr


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


Solve: `("d"y)/("d"x) + 2/xy` = x2 


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


Solve: ydx – xdy = x2ydx.


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


Solve the differential equation

`y (dy)/(dx) + x` = 0


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×