English

Solve: dydx+2xy = x2 - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve: `("d"y)/("d"x) + 2/xy` = x2 

Sum

Solution

`("d"y)/("d"x) + 2/xy` = x2 

The given equation is of the form

`("d"y)/("d"x) + "P"y` = Q.

where P = `2/x` and Q = x2

∴ I.F. = `"e"^(int^("Pd"x))`

= `"e"^(int2/x)  "d"x`

= `"e"^(2logx)`

= `"e"^(log x^2)`

= x2

∴ Solution of the given equation is

`y("I"."F".) = int"Q"("I.""F.")  "d"x + "c"_1`

∴ `y * x^2 = intx^2 * x^2  "d"x + "c"_1`

∴ `yx^2 = intx^4  "d"x + "c"_1`

∴ yx2 = `x^5/5 + "c"_1`

∴ 5x2y = x5 + c, where c = 5c1 

shaalaa.com
  Is there an error in this question or solution?
Chapter 1.8: Differential Equation and Applications - Q.4

APPEARS IN

SCERT Maharashtra Mathematics and Statistics (Commerce) [English] 12 Standard HSC
Chapter 1.8 Differential Equation and Applications
Q.4 | Q 10
SCERT Maharashtra Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC
Chapter 2.6 Differential Equations
Attempt the following questions II | Q 10

RELATED QUESTIONS

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{dy}{dx} + 2x = e^{3x}\]

\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[5\frac{dy}{dx} = e^x y^4\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

(ey + 1) cos x dx + ey sin x dy = 0


x cos2 y  dx = y cos2 x dy


\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

(x2 − y2) dx − 2xy dy = 0


\[xy\frac{dy}{dx} = x^2 - y^2\]

\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


y2 dx + (x2 − xy + y2) dy = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Form the differential equation from the relation x2 + 4y2 = 4b2


Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


Solve the following differential equation.

`dy/dx + y` = 3


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


y2 dx + (xy + x2)dy = 0


y dx – x dy + log x dx = 0


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Solve the differential equation `"dy"/"dx" + 2xy` = y


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


Solve the differential equation

`x + y dy/dx` = x2 + y2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×