Advertisements
Advertisements
Question
(ey + 1) cos x dx + ey sin x dy = 0
Solution
We have,
\[\left( e^y + 1 \right) \cos x dx + e^y \sin x dy = 0\]
\[ \Rightarrow e^y \sin x dy = - \left( e^y + 1 \right) \cos x dx\]
\[ \Rightarrow \frac{e^y}{e^y + 1}dy = - \frac{\cos x}{\sin x}dx\]
\[ \Rightarrow \frac{e^y}{e^y + 1}dy = - \cot x dx\]
Integrating both sides, we get
\[\int\frac{e^y}{e^y + 1}dy = - \int\cot x dx\]
\[\text{ Putting }e^y + 1 = t,\text{ we get }\]
\[ e^y dy = dt\]
\[ \therefore \int\frac{dt}{t} = - \int\cot x dx\]
\[ \Rightarrow \log\left| t \right| = - \log \left| \sin x \right| + \log C \]
\[ \Rightarrow \log \left| e^y + 1 \right| + \log \left| \sin x \right| = \log C\]
\[ \Rightarrow \log\left| \left( e^y + 1 \right) \sin x \right| = \log C\]
\[ \Rightarrow \left( e^y + 1 \right) \sin x = C\]
\[ \Rightarrow \left( e^y + 1 \right) \sin x = C\]
\[\text{ Hence, }\left( e^y + 1 \right) \sin x = C\text{ is the required solution}. \]
APPEARS IN
RELATED QUESTIONS
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Verify that y = cx + 2c2 is a solution of the differential equation
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
y ex/y dx = (xex/y + y) dy
Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
Solve the differential equation xdx + 2ydy = 0
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.