English

Choose the correct option from the given alternatives: The solution of xdydxx1x⋅dydx=tan-1x is - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is

Options

  • `("x"^2 tan^-1 "x")/2 + "c" = 0`

  • x tan-1 x + c = 0

  • x - tan-1 x = c 

  • y = `("x"^2 tan^-1 "x")/2 - 1/2 ("x" - tan^-1 "x") + "c"`

MCQ

Solution

y = `("x"^2 tan^-1 "x")/2 - 1/2 ("x" - tan^-1 "x") + "c"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Miscellaneous exercise 1 [Page 215]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 6 Differential Equations
Miscellaneous exercise 1 | Q 1.06 | Page 215

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{dy}{dx} = \log x\]

\[\sin^4 x\frac{dy}{dx} = \cos x\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\frac{dy}{dx} = \sin^2 y\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

xy dy = (y − 1) (x + 1) dx


Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


\[\frac{dy}{dx} = \left( x + y \right)^2\]

\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

(x2 − y2) dx − 2xy dy = 0


\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

y ex/y dx = (xex/y + y) dy


(y2 − 2xy) dx = (x2 − 2xy) dy


(x + 2y) dx − (2x − y) dy = 0


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Define a differential equation.


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Form the differential equation from the relation x2 + 4y2 = 4b2


Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve the following differential equation.

`dy/dx + 2xy = x`


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


Solve the differential equation:

`e^(dy/dx) = x`


Solve:

(x + y) dy = a2 dx


y2 dx + (xy + x2)dy = 0


y dx – x dy + log x dx = 0


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Solve: ydx – xdy = x2ydx.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×