Advertisements
Advertisements
Question
xy dy = (y − 1) (x + 1) dx
Solution
We have,
\[xy dy = \left( y - 1 \right)\left( x + 1 \right) dx\]
\[ \Rightarrow \frac{y}{y - 1}dy = \frac{x + 1}{x}dx\]
Integrating both sides, we get
\[\int\frac{y}{y - 1}dy = \int\frac{x + 1}{x}dx\]
\[ \Rightarrow \int\frac{y - 1 + 1}{y - 1}dy = \int\frac{x + 1}{x}dx\]
\[ \Rightarrow \int dy + \int\frac{1}{y - 1}dy = \int dx + \int\frac{1}{x}dx\]
\[ \Rightarrow y + \log \left| y - 1 \right| = x + \log \left| x \right| + C\]
\[ \Rightarrow y - x = \log\left| x \right| - \log\left| y - 1 \right| + C\]
\[\text{ Hence, }y - x = \log \left| x \right| - \log \left| y - 1 \right| + \text{ C is the required solution .} \]
APPEARS IN
RELATED QUESTIONS
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
x2 dy + y (x + y) dx = 0
2xy dx + (x2 + 2y2) dy = 0
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Define a differential equation.
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
y2 dx + (x2 − xy + y2) dy = 0
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Form the differential equation from the relation x2 + 4y2 = 4b2
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
The solution of `dy/dx + x^2/y^2 = 0` is ______
Solve:
(x + y) dy = a2 dx
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.