English

X D Y D X + Cot Y = 0 - Mathematics

Advertisements
Advertisements

Question

\[x\frac{dy}{dx} + \cot y = 0\]

Solution

We have, 
\[x\frac{dy}{dx} + \cot y = 0\]
\[ \Rightarrow x\frac{dy}{dx} = - \cot y\]
\[ \Rightarrow \frac{1}{x}dx = - \frac{1}{\cot y}dy\]
\[ \Rightarrow \frac{1}{x}dx = - \tan y dy\]
Integrating both sides, we get
\[\int\frac{1}{x}dx = - \int\tan y dy\]
\[ \Rightarrow \ln \left| x \right| = - \ln\left| \sec y \right| + \ln C\]
\[ \Rightarrow \ln \left| x \right| = \ln \left| \cos y \right| + \ln C\]
\[ \Rightarrow x = C \cos y \]
\[\text{ Hence, }x = C \cos y\text{ is the required solution .} \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 13 | Page 55

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

(1 − x2) dy + xy dx = xy2 dx


(y + xy) dx + (x − xy2) dy = 0


\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\frac{dy}{dx} + 1 = e^{x + y}\]

x2 dy + y (x + y) dx = 0


\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

\[x\frac{dy}{dx} = x + y\]

\[xy\frac{dy}{dx} = x^2 - y^2\]

Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


The solution of the differential equation y1 y3 = y22 is


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


 `dy/dx = log x`


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×