Advertisements
Advertisements
Question
Solution
We have,
\[x\frac{dy}{dx} + \cot y = 0\]
\[ \Rightarrow x\frac{dy}{dx} = - \cot y\]
\[ \Rightarrow \frac{1}{x}dx = - \frac{1}{\cot y}dy\]
\[ \Rightarrow \frac{1}{x}dx = - \tan y dy\]
Integrating both sides, we get
\[\int\frac{1}{x}dx = - \int\tan y dy\]
\[ \Rightarrow \ln \left| x \right| = - \ln\left| \sec y \right| + \ln C\]
\[ \Rightarrow \ln \left| x \right| = \ln \left| \cos y \right| + \ln C\]
\[ \Rightarrow x = C \cos y \]
\[\text{ Hence, }x = C \cos y\text{ is the required solution .} \]
APPEARS IN
RELATED QUESTIONS
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
(1 − x2) dy + xy dx = xy2 dx
(y + xy) dx + (x − xy2) dy = 0
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
x2 dy + y (x + y) dx = 0
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
The solution of the differential equation y1 y3 = y22 is
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
`dy/dx = log x`
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]