Advertisements
Advertisements
Question
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Solution
We have,
\[y = c e^{tan^{- 1}x } ............(1)\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = c e^{tan^{- 1}x } \frac{1}{1 + x^2}............(2)\]
Differentiating both sides of (2) with respect to x, we get
\[\frac{d^2 y}{d x^2} = c\frac{\left( 1 + x^2 \right) e^{tan^{- 1}x} \frac{1}{1 + x^2} - e^{tan^{- 1}x} \left( 2x \right)}{\left( 1 + x^2 \right)^2}\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = c\frac{e^{tan^{- 1}x} - 2x e^{tan^{- 1}x}}{\left( 1 + x^2 \right)^2}\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = c\frac{\left( 1 - 2x \right) e^{tan^{- 1}x}}{\left( 1 + x^2 \right)^2}\]
\[ \Rightarrow \left( 1 + x^2 \right)\frac{d^2 y}{d x^2} = c\left( 1 - 2x \right)\frac{e^{tan^{- 1}x}}{\left( 1 + x^2 \right)}\]
\[ \Rightarrow \left( 1 + x^2 \right)\frac{d^2 y}{d x^2} = \left( 1 - 2x \right)\frac{dy}{dx} ..........\left[\text{Using }\left( 2 \right) \right]\]
\[ \Rightarrow \left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
RELATED QUESTIONS
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Verify that y = cx + 2c2 is a solution of the differential equation
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
(x2 − y2) dx − 2xy dy = 0
(y2 − 2xy) dx = (x2 − 2xy) dy
Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Determine the order and degree of the following differential equations.
Solution | D.E |
y = aex + be−x | `(d^2y)/dx^2= 1` |
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
Solve the differential equation:
`e^(dy/dx) = x`
y dx – x dy + log x dx = 0
Solve the differential equation xdx + 2ydy = 0
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to:
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:
Solve the differential equation
`x + y dy/dx` = x2 + y2