Advertisements
Advertisements
Question
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
Solution
We have,
\[y^2 = 4a\left( x + a \right)...........(1)\]
Differentiating both sides of (1) with respect to x, we get
\[2y\frac{dy}{dx} = 4a\]
\[ \Rightarrow y\frac{dy}{dx} = 2a\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2a}{y} ..........(2)\]
Now,
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} - 2x\frac{dy}{dx}\]
\[ = y\left\{ 1 - \frac{4 a^2}{y^2} \right\} - 2x\left( \frac{2a}{y} \right)\]
\[ = y\left\{ \frac{y^2 - 4 a^2}{y^2} \right\} - \frac{4ax}{y}\]
\[ = \frac{y^2 - 4 a^2}{y} - \frac{4ax}{y}\]
\[ = \frac{\left( 4ax + 4 a^2 \right) - 4 a^2}{y} - \frac{4ax}{y} ...........\left[\text{Using }\left( 1 \right) \right]\]
\[ = \frac{4ax}{y} - \frac{4ax}{y} = 0\]
\[ \Rightarrow y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
RELATED QUESTIONS
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Show that y = AeBx is a solution of the differential equation
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
`dy/dx + y` = 3
Solve the following differential equation.
dr + (2r)dθ= 8dθ
The solution of `dy/dx + x^2/y^2 = 0` is ______
Solve the differential equation:
dr = a r dθ − θ dr
Solve the differential equation `("d"y)/("d"x) + y` = e−x
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
Solve the following differential equation y2dx + (xy + x2) dy = 0
The function y = ex is solution ______ of differential equation