Advertisements
Advertisements
Question
Solution
We have,
\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x\]
\[\Rightarrow \frac{dy}{dx} = x \tan^{- 1} x\]
\[ \Rightarrow dy = \left( x \tan^{- 1} x \right)dx\]
Integrating both sides, we get
\[\int dy = \int\left( x \tan^{- 1} x \right)dx\]
\[ \Rightarrow \int dy = \tan^{- 1} x\int x dx - \int\left[ \frac{d}{dx}\left( \tan^{- 1} x \right)\int x dx \right]dx\]
\[ \Rightarrow y = \frac{x^2 \tan^{- 1} x}{2} - \frac{1}{2}\int\frac{x^2}{1 + x^2}dx\]
\[ \Rightarrow y = \frac{x^2 \tan^{- 1} x}{2} - \frac{1}{2}\int\frac{x^2 + 1 - 1}{1 + x^2}dx\]
\[ \Rightarrow y = \frac{x^2 \tan^{- 1} x}{2} - \frac{1}{2}\int\left( 1 - \frac{1}{1 + x^2} \right)dx\]
\[ \Rightarrow y = \frac{x^2 \tan^{- 1} x}{2} - \frac{1}{2}x + \frac{\tan^{- 1} x}{2} + C\]
\[ \Rightarrow y = \frac{\left( x^2 + 1 \right) \tan^{- 1} x}{2} - \frac{1}{2}x + C\]
\[\text{ Hence, }y = \frac{\left( x^2 + 1 \right) \tan^{- 1} x}{2} - \frac{1}{2}x +\text{C is the solution to the given differential equation.}\]
APPEARS IN
RELATED QUESTIONS
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
x cos2 y dx = y cos2 x dy
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
y2 dx + (x2 − xy + y2) dy = 0
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Solve the following differential equation.
`dy/dx + y` = 3
Solve the following differential equation.
dr + (2r)dθ= 8dθ
Solve
`dy/dx + 2/ x y = x^2`
`xy dy/dx = x^2 + 2y^2`
y dx – x dy + log x dx = 0
The function y = ex is solution ______ of differential equation
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx