English

Form the Differential Equation of the Family of Parabolas Having Vertex at Origin and Axis Along Positive Y-axis. - Mathematics

Advertisements
Advertisements

Question

Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.

Sum

Solution

The equation of the parabola having vertex at origin and axis along the positive direction of y-axis is given by

x2 =4ay         .....(1)

Since there is only one parameter, so we differentiate it only once.

Differentiating with respect to x, we get

\[2x = 4ay'\]

\[ \Rightarrow 4a = \frac{2x}{y'}\]

Substituting the value of 4a in (1), we get

\[x^2 = \frac{2x}{y'} \times y\]

\[ \Rightarrow xy' = 2y\]

\[ \Rightarrow xy' - 2y = 0\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 145]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 8 | Page 145

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


\[\frac{dy}{dx} = \log x\]

\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[5\frac{dy}{dx} = e^x y^4\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[2xy\frac{dy}{dx} = x^2 + y^2\]

\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Form the differential equation from the relation x2 + 4y2 = 4b2


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×