English

Form the Differential Equation of the Family of Ellipses Having Foci on Y-axis and Centre at the Origin. - Mathematics

Advertisements
Advertisements

Question

Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.

Sum

Solution

The equation of the ellipses having foci on y-axis and centre at the origin is given by

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1............(1)\]

Here,

b > a

Since these are two parameters, so we differentiate the equation twice.

Differentiating with respect to x, we get

\[\frac{2x}{a^2} + \frac{2y}{b^2}y' = 0\]
\[ \Rightarrow \frac{x}{a^2} + \frac{y}{b^2}y' = 0 . . . . . \left( 2 \right)\]
\[ \Rightarrow \frac{1}{a^2} + \frac{1}{b^2} \left( y' \right)^2 + \frac{y}{b^2}y'' = 0 . . . . . \left( 3 \right)\]
Multiplying throughout by x, we get
\[\frac{x}{a^2} + \frac{x}{b^2} \left( y' \right)^2 + \frac{xy}{b^2}y'' = 0 . . . . . \left( 4 \right)\]
Subtracting (2) from (4), we get
\[\frac{1}{b^2}\left[ x \left( y' \right)^2 + xyy'' - yy' \right] = 0 \]
\[ \Rightarrow x \left( y' \right)^2 + xyy'' - yy' = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 145]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 9 | Page 145

RELATED QUESTIONS

Form the differential equation of the family of circles touching the y-axis at the origin.


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.


Which of the following differential equations has y = c1 ex + c2 e–x as the general solution?

(A) `(d^2y)/(dx^2) + y = 0`

(B) `(d^2y)/(dx^2) - y = 0`

(C) `(d^2y)/(dx^2) + 1 = 0`

(D) `(d^2y)/(dx^2)  - 1 = 0`

 

 


Form the differential equation from the following primitive where constants are arbitrary:
xy = a2


Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2


Form the differential equation of the family of curves represented by the equation (a being the parameter):
 (x − a)2 + 2y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + y = x^4\]


Find one-parameter families of solution curves of the following differential equation:-

\[\left( x \log x \right)\frac{dy}{dx} + y = \log x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} \cos^2 x = \tan x - y\]


Find one-parameter families of solution curves of the following differential equation:-

\[x \log x\frac{dy}{dx} + y = 2 \log x\]


Write the differential equation representing family of curves y = mx, where m is arbitrary constant.


Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.


Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.


Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.


Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.


Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`


Family y = Ax + A3 of curves is represented by the differential equation of degree ______.


Family y = Ax + A3 of curves will correspond to a differential equation of order ______.


The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.


The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.


Find the equation of the curve at every point of which the tangent line has a slope of 2x:


Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×