Advertisements
Advertisements
Questions
Find one-parameter families of solution curves of the following differential equation:-
\[x \log x\frac{dy}{dx} + y = 2 \log x\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = 2 \log x\]
Solution
\[x \log x\frac{dy}{dx} + y = 2\log x\]
Dividing both sides by x \log x, we get
\[\frac{dy}{dx} + \frac{y}{x \log x} = 2\frac{\log x}{x \log x}\]
\[ \Rightarrow \frac{dy}{dx} + \frac{y}{x \log x} = \frac{2}{x}\]
\[ \Rightarrow \frac{dy}{dx} + \left( \frac{1}{x \log x} \right)y = \frac{2}{x}\]
\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get }\]
\[P = \frac{1}{x \log x}\]
\[Q = \frac{2}{x}\]
Now,
\[I.F. = e^{\int P\ dx} = e^{\int\frac{1}{x \log x}dx} \]
\[ = e^{log\left| \log x \right|} \]
\[ = \log x\]
So, the solution is given by
\[y \times I . F . = \int Q \times I . F . dx + C\]
\[ \Rightarrow y \log x = 2\int\frac{1}{x} \times \log x dx + C\]
\[\text{Putting }\log x = t\]
\[ \Rightarrow \frac{1}{x}dx = dt\]
\[ \therefore y \log x = 2\int t\ dt + C\]
\[ \Rightarrow y \log x = \frac{2 t^2}{2} + C\]
\[ \Rightarrow y \log x = t^2 + C\]
\[ \Rightarrow y \log x = \left( \log x \right)^2 + C .............\left( \because \log x = t \right)\]
\[ \Rightarrow y = \log x + \frac{C}{\log x}\]
APPEARS IN
RELATED QUESTIONS
Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.
Which of the following differential equations has y = c1 ex + c2 e–x as the general solution?
(A) `(d^2y)/(dx^2) + y = 0`
(B) `(d^2y)/(dx^2) - y = 0`
(C) `(d^2y)/(dx^2) + 1 = 0`
(D) `(d^2y)/(dx^2) - 1 = 0`
Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.
For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3
Form the differential equation of the family of curves represented by y2 = (x − c)3.
Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3
Form the differential equation from the following primitive where constants are arbitrary:
xy = a2
Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c
Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.
Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3
Show that y = bex + ce2x is a solution of the differential equation, \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} - y = \cos 2x\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + y = x^4\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Write the differential equation representing family of curves y = mx, where m is arbitrary constant.
Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.
Find the differential equation of the family of curves y = Ae2x + B.e–2x.
Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.
The differential equation representing the family of curves y = A sinx + B cosx is ______.
Find the differential equation of system of concentric circles with centre (1, 2).
Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.
The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.
Family y = Ax + A3 of curves will correspond to a differential equation of order ______.
The differential equation of the family of curves y2 = 4a(x + a) is ______.
The area above the x-axis and under the curve `y = sqrt(1/x - 1)` for `1/2 ≤ x ≤ 1` is: