English

Form the Differential Equation from the Following Primitive Where Constants Are Arbitrary: Y = Ax2 + Bx + C - Mathematics

Advertisements
Advertisements

Question

Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c

Solution

The equation of family of curves is \[y = a x^2 + bx + c\]                                         ...(1)
where \[a, b\text{ and }c\] are arbitrary constants. So, we shall get a differential equation of third order.
Differentiating equation (1) with respect to x, we get
\[\frac{dy}{dx} = 2ax + b\]                                             ...(2)
Differentiating equation (2) with respect to x, we get

\[\frac{d^2 y}{d x^2} = 2a\]                                           ...(3)
Differentiating equation (3) with respect to x, we get
\[\frac{d^3 y}{d x^3} = 0\]
It is the required differential equation.
shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.02 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.02 | Q 3.4 | Page 16

RELATED QUESTIONS

Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.


Which of the following differential equations has y = c1 ex + c2 e–x as the general solution?

(A) `(d^2y)/(dx^2) + y = 0`

(B) `(d^2y)/(dx^2) - y = 0`

(C) `(d^2y)/(dx^2) + 1 = 0`

(D) `(d^2y)/(dx^2)  - 1 = 0`

 

 


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3


Show that the family of curves for which `dy/dx = (x^2+y^2)/(2x^2)` is given by  x2 - y2 = cx


Form the differential equation of the family of curves represented by y2 = (x − c)3.


Form the differential equation corresponding to y = emx by eliminating m.


Form the differential equation from the following primitive where constants are arbitrary:
xy = a2


Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\left( x \log x \right)\frac{dy}{dx} + y = \log x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} \cos^2 x = \tan x - y\]


The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by


Form the differential equation representing the family of curves `y2 = m(a2 - x2) by eliminating the arbitrary constants 'm' and 'a'. 


Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.


Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.


Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.


The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.


The differential equation representing the family of curves y = A sinx + B cosx is ______.


Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.


Form the differential equation by eliminating A and B in Ax2 + By2 = 1


The differential equation of the family of curves y2 = 4a(x + a) is ______.


The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.


From the differential equation of the family of circles touching the y-axis at origin


Form the differential equation of family of circles having centre on y-axis and raduis 3 units


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×