English

Form the differential equation of all circles which pass through origin and whose centres lie on y-axis. - Mathematics

Advertisements
Advertisements

Question

Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.

Sum

Solution


Equation of circle which passes through the origin and whose centre lies on y-axis is

(x – 0)2 + (y – a)2 = a2

⇒ x2 + y2 + a2 – 2ay = a2

⇒ x2 + y2 – 2ay = 0   ......(i)

Differentiating both sides w.r.t. x we get

⇒ `2x + 2y * "dy"/"dx" - 2"a" * "dy"/"dx"` = 0

⇒ `x + y "dy"/"dx" - "a" * "dy"/"dx"` = 0

⇒ `x + (y - "a") * "dy"/"dx"` = 0

`y - "a" = x/("dy"/"dx")`

a = `y + (-x)/("dy"/"dx")`

Putting the value of a in equation (i), we get

`x^2 + y^2 - 2(y + x/("dy"/"dx"))y` = 0

⇒ `x^2 + y^2 - 2y^2 - (2xy)/("dy"/"dx")` = 0

⇒ `x^2 - y^2 = (2xy)/("dy"/"dx")`

∴ `(x^2 - y^2) "dy"/"dx" - 2xy` = 0

Hence, the required differential equation is `(x^2 - y^2) "dy"/"dx" - 2xy` = 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise [Page 194]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise | Q 14 | Page 194

RELATED QUESTIONS

Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.


Which of the following differential equations has y = c1 ex + c2 e–x as the general solution?

(A) `(d^2y)/(dx^2) + y = 0`

(B) `(d^2y)/(dx^2) - y = 0`

(C) `(d^2y)/(dx^2) + 1 = 0`

(D) `(d^2y)/(dx^2)  - 1 = 0`

 

 


Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3


Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.


Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2


Form the differential equation of the family of curves represented by the equation (a being the parameter):
 (x − a)2 + 2y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3


For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).


Find one-parameter families of solution curves of the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.


Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.


Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.


Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.


Find the differential equation of the family of lines through the origin.


The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.


Find the equation of a curve passing through origin and satisfying the differential equation `(1 + x^2) "dy"/"dx" + 2xy` = 4x2 


Form the differential equation by eliminating A and B in Ax2 + By2 = 1


Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.


Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×