English

Represent the Following Families of Curves by Forming the Corresponding Differential Equations (A, B Being Parameters): X2 + Y2 = Ax3 - Mathematics

Advertisements
Advertisements

Question

Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3

Sum

Solution

The equation of family of curves is \[x^2 + y^2 = a x^3........(1)\]

where `a` is a parameter.

As this equation has only one arbitrary constant, we shall get a differential equation of first order.

Differentiating (1) with respect to x, we get

\[2x + 2y\frac{dy}{dx} = 3a x^2 \]

\[ \Rightarrow 2x + 2y\frac{dy}{dx} = 3\left( \frac{x^2 + y^2}{x^3} \right) x^2 ........\left[\text{Using}\left( 1 \right) \right]\]

\[ \Rightarrow 2x + 2y\frac{dy}{dx} = 3\frac{x^2 + y^2}{x}\]

\[ \Rightarrow 2 x^2 + 2xy\frac{dy}{dx} = 3 x^2 + 3 y^2 \]

\[ \Rightarrow 2xy\frac{dy}{dx} = x^2 + 3 y^2 \]

It is the required differential equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.02 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.02 | Q 16.09 | Page 17

RELATED QUESTIONS

Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.


Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

 

Which of the following differential equation has y = x as one of its particular solution?

A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`

B. `(d^2y)/(dx^2) + x dy/dx + xy = x`

C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`

D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`

 

 

 


Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.


Form the differential equation from the following primitive where constants are arbitrary:
xy = a2


Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c


Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
 (x − a)2 + 2y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)

 


Show that y = bex + ce2x is a solution of the differential equation, \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Write the differential equation representing family of curves y = mx, where m is arbitrary constant.


Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.


Form the differential equation representing the family of curves `y2 = m(a2 - x2) by eliminating the arbitrary constants 'm' and 'a'. 


Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.


Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.


Find the differential equation of the family of curves y = Ae2x + B.e–2x.


Find the differential equation of the family of lines through the origin.


Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.


The differential equation representing the family of curves y = A sinx + B cosx is ______.


Find the equation of a curve passing through origin and satisfying the differential equation `(1 + x^2) "dy"/"dx" + 2xy` = 4x2 


Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`


The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.


The differential equation of the family of curves y2 = 4a(x + a) is ______.


The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.


Form the differential equation of family of circles having centre on y-axis and raduis 3 units


Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×