English

Represent the Following Families of Curves by Forming the Corresponding Differential Equations (A, B Being Parameters): (X − A)2 − Y2 = 1 - Mathematics

Advertisements
Advertisements

Question

Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1

Sum

Solution

The equation of family of curves is \[\left( x - a \right)^2 - y^2 = 1.........(1)\]

where a is a parameter.

As this equation has only one arbitrary constant, we shall get a differential equation of first order.

Differentiating (1) with respect to x, we get

\[2\left( x - a \right) - 2y\frac{dy}{dx} = 0\]

\[ \Rightarrow \left( x - a \right) - y\frac{dy}{dx} = 0\]

\[ \Rightarrow \sqrt{1 + y^2} = y\frac{dy}{dx} ........\left[\text{Using}\left( 1 \right) \right]\]

\[ \Rightarrow 1 + y^2 = y^2 \left( \frac{dy}{dx} \right)^2 \]

\[ \Rightarrow y^2 \left( \frac{dy}{dx} \right)^2 - y^2 = 1\]

It is the required differential equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.02 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.02 | Q 16.05 | Page 17

RELATED QUESTIONS

Which of the following differential equations has y = c1 ex + c2 e–x as the general solution?

(A) `(d^2y)/(dx^2) + y = 0`

(B) `(d^2y)/(dx^2) - y = 0`

(C) `(d^2y)/(dx^2) + 1 = 0`

(D) `(d^2y)/(dx^2)  - 1 = 0`

 

 


Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax


Form the differential equation from the following primitive where constants are arbitrary:
xy = a2


Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.


Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + y = x^4\]


Find one-parameter families of solution curves of the following differential equation:-

\[\left( x \log x \right)\frac{dy}{dx} + y = \log x\]


Find one-parameter families of solution curves of the following differential equation:-

\[e^{- y} \sec^2 y dy = dx + x dy\]


Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.


Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.


Find the differential equation of the family of lines through the origin.


Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.


The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.


The differential equation representing the family of curves y = A sinx + B cosx is ______.


Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`


The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.


Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0


Find the equation of the curve at every point of which the tangent line has a slope of 2x:


The area above the x-axis and under the curve `y = sqrt(1/x - 1)` for `1/2 ≤ x ≤ 1` is:


Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×