Advertisements
Advertisements
Question
Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.
Solution
Let the equation of normal at P(x, y) be Y – y = `(-"dx")/"dy" ("X" - x)`
i.e., `"Y" + "X" "dx"/"dy" - (y + x "dx"/"dy")` = 0 .....(1)
Therefore, the length of perpendicular from origin to (1) is
`(y + x "dx"/"dy")/sqrt(1 + ("dx"/"dy")^2)` .....(2)
Also distance between P and x-axis is |y|.
Thus, we get `(y + x "dx"/"dy")/sqrt(1 + ("dx"/"dy")^2) = |y|`
⇒ `(y + x "dx"/"dy")^2 = y^2 [1 + ("dx"/"dy")^2]`
⇒ `"dx"/"dy" ["dx"/"dy" (x^2 - y^2) + 2xy]` = 0
⇒ `"dx"/"dy"` = 0
or `"dx"/"dy" = (2xy)/(y^2 - x^2)`
Case I: `"dx"/"dy" = 0
⇒ dx = 0
Integrating both sides, we get x = k,
Substituting x = 1, we get k = 1.
Therefore, x = 1 is the equation of curve .....(not possible, so rejected).
Case II: `"dx"/"dy" = (2xy)/(y^2 - x^2)`
⇒ `"dy"/"dx" = (y^2 - x^2)/(2xy)`.
Substituting y = vx, we get
`"v" + x "dv"/"dx" = ("v"^2x^2 - x^2)/(2"v"x^2)`
⇒ `x * "dv"/"dx" = ("v"^2 - 1)/(2"v")`
= `(-(1 + "v"^2))/(2"v")`
⇒ `(2"v")/(1 + "v"^2) "dv" = (-"dv")/x`
Integrating both sides, we get
log(1 + v2) = – logx + logc
⇒ log(1 + v2)(x) = log c
⇒ (1 + v2) x = c
⇒ x2 + y2 = cx.
Substituting x = 1,
y = 1, we get c = 2.
Therefore, x2 + y2 – 2x = 0 is the required equation.
APPEARS IN
RELATED QUESTIONS
Form the differential equation of the family of circles having centre on y-axis and radius 3 units.
Show that the family of curves for which `dy/dx = (x^2+y^2)/(2x^2)` is given by x2 - y2 = cx
Form the differential equation of the family of curves represented by y2 = (x − c)3.
Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3
Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c
Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.
Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)
Show that y = bex + ce2x is a solution of the differential equation, \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}\]
Find one-parameter families of solution curves of the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find one-parameter families of solution curves of the following differential equation:-
\[e^{- y} \sec^2 y dy = dx + x dy\]
Find one-parameter families of solution curves of the following differential equation:-
\[x \log x\frac{dy}{dx} + y = 2 \log x\]
Write the order of the differential equation representing the family of curves y = ax + a3.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.
Find the differential equation of the family of curves y = Ae2x + B.e–2x.
The differential equation representing the family of curves y = A sinx + B cosx is ______.
Find the equation of a curve passing through origin and satisfying the differential equation `(1 + x^2) "dy"/"dx" + 2xy` = 4x2
Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abcissa and ordinate of the point.
The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.
The differential equation of the family of curves y2 = 4a(x + a) is ______.
The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.
Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0
Find the equation of the curve at every point of which the tangent line has a slope of 2x: