हिंदी

Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.

योग

उत्तर

Let the equation of normal at P(x, y) be Y – y = `(-"dx")/"dy" ("X" - x)`

i.e., `"Y" + "X" "dx"/"dy" - (y + x "dx"/"dy")` = 0   .....(1)

Therefore, the length of perpendicular from origin to (1) is

`(y + x "dx"/"dy")/sqrt(1 + ("dx"/"dy")^2)`  .....(2)

Also distance between P and x-axis is |y|.

Thus, we get `(y + x "dx"/"dy")/sqrt(1 + ("dx"/"dy")^2) = |y|`

⇒ `(y + x "dx"/"dy")^2 = y^2 [1 + ("dx"/"dy")^2]`

⇒ `"dx"/"dy" ["dx"/"dy" (x^2 - y^2) + 2xy]` = 0

⇒ `"dx"/"dy"` = 0

or `"dx"/"dy" = (2xy)/(y^2 - x^2)`

Case I: `"dx"/"dy" = 0

⇒ dx = 0

Integrating both sides, we get x = k,

Substituting x = 1, we get k = 1.

Therefore, x = 1 is the equation of curve  .....(not possible, so rejected).

Case II: `"dx"/"dy" = (2xy)/(y^2 - x^2)`

⇒ `"dy"/"dx" = (y^2 - x^2)/(2xy)`.

Substituting y = vx, we get

`"v" + x "dv"/"dx" = ("v"^2x^2 - x^2)/(2"v"x^2)`

⇒ `x * "dv"/"dx" = ("v"^2 - 1)/(2"v")`

= `(-(1 + "v"^2))/(2"v")`

⇒ `(2"v")/(1 + "v"^2) "dv" = (-"dv")/x`

Integrating both sides, we get

log(1 + v2) = – logx + logc

⇒ log(1 + v2)(x) = log c

⇒ (1 + v2) x = c

⇒ x2 + y2 = cx.

Substituting x = 1,

y = 1, we get c = 2.

Therefore, x2 + y2 – 2x = 0 is the required equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Solved Examples [पृष्ठ १८३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Solved Examples | Q 8 | पृष्ठ १८३

संबंधित प्रश्न

Form the differential equation of the family of circles touching the y-axis at the origin.


Which of the following differential equation has y = x as one of its particular solution?

A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`

B. `(d^2y)/(dx^2) + x dy/dx + xy = x`

C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`

D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`

 

 

 


Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.


Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax


Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c


Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.


Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.


Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + y = x^4\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]


Write the order of the differential equation representing the family of curves y = ax + a3.


Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.


Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.


The differential equation representing the family of curves y = A sinx + B cosx is ______.


Find the equation of a curve passing through origin and satisfying the differential equation `(1 + x^2) "dy"/"dx" + 2xy` = 4x2 


Form the differential equation by eliminating A and B in Ax2 + By2 = 1


Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.


Family y = Ax + A3 of curves is represented by the differential equation of degree ______.


The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.


The area above the x-axis and under the curve `y = sqrt(1/x - 1)` for `1/2 ≤ x ≤ 1` is:


Form the differential equation of family of circles having centre on y-axis and raduis 3 units


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×