हिंदी

Find the Equation of a Curve Passing Through the Point (0, 0) and Whose Differential Equation is D Y D X = E X Sin X - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]

योग

उत्तर

We have to find the equation of the curve that passes through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]

\[\therefore dy = e^x \sin x\ dx\]

Integarting both sides, we get

\[\int dy = \int e^x \sin x\ dx\]

\[ \Rightarrow y = \int e^x \sin x\ dx ...............(1)\]

\[ \Rightarrow y = e^x \int \sin x\ dx - \int\left\{ \frac{d}{dx}\left( e^x \right) \int\sin x\ dx \right\} dx\]

\[ \Rightarrow y = - e^x \cos x + \int e^x \cos x\ dx\]

\[ \Rightarrow y = - e^x \cos x + \left[ e^x \int \cos x\ dx - \int\left\{ \frac{d}{dx}\left( e^x \right) \int\cos x\ dx \right\}dx \right]\]

\[ \Rightarrow y = - e^x \cos x + e^x \sin x - \int e^x \sin x\ dx\]

\[ \Rightarrow y = - e^x \cos x + e^x \sin x - y + C..............\left[\text{Using (1)}\right]\]

\[ \Rightarrow 2y = e^x \left( \sin x - \cos x \right) + C ...............(2)\]

The curve passes through the point (0, 0)

When, `x = 0; y = 0`

Substituting the value of `x` and `y` in (2), we get

\[0 = 1\left( 0 - 1 \right) + C\]

\[ \Rightarrow C = 1\]

\[\text{ Substituting the value of C in }\left( 2 \right),\text{ we get }\]

\[2y = e^x \left( \sin x - \cos x \right) + 1\]

Required equation of curve is `2y = e^x (sin x - cos x) + 1`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 52 | पृष्ठ ५६

संबंधित प्रश्न

Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.


Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

 

Which of the following differential equations has y = c1 ex + c2 e–x as the general solution?

(A) `(d^2y)/(dx^2) + y = 0`

(B) `(d^2y)/(dx^2) - y = 0`

(C) `(d^2y)/(dx^2) + 1 = 0`

(D) `(d^2y)/(dx^2)  - 1 = 0`

 

 


Which of the following differential equation has y = x as one of its particular solution?

A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`

B. `(d^2y)/(dx^2) + x dy/dx + xy = x`

C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`

D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`

 

 

 


Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3


Form the differential equation corresponding to y = emx by eliminating m.


Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax


Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3


Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.


Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.


Form the differential equation corresponding to (x − a)2 + (y − b)2 = r2 by eliminating a and b.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2


Form the differential equation of the family of curves represented by the equation (a being the parameter):
 (x − a)2 + 2y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - y = \cos 2x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} \cos^2 x = \tan x - y\]


Write the order of the differential equation representing the family of curves y = ax + a3.


Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.


Find the differential equation of the family of curves y = Ae2x + B.e–2x.


The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.


The differential equation representing the family of curves y = A sinx + B cosx is ______.


Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.


Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.


Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abcissa and ordinate of the point.


Family y = Ax + A3 of curves is represented by the differential equation of degree ______.


The differential equation of the family of curves y2 = 4a(x + a) is ______.


Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×